Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (5): 491-497.doi: 10.11958/20221272
• Experimental Research • Previous Articles Next Articles
ZUO Xianhong1(), ZHANG Tingting1,△(
), LI Yueqin2, ZHAO Jiaqi2
Received:
2022-08-15
Revised:
2022-11-01
Published:
2023-05-15
Online:
2023-05-05
Contact:
△E-mail:147257761@qq.com
ZUO Xianhong, ZHANG Tingting, LI Yueqin, ZHAO Jiaqi. Effect and mechanism of silencing Salusin-β on endothelial dysfunction in diabetes rats[J]. Tianjin Medical Journal, 2023, 51(5): 491-497.
CLC Number:
基因名称 | 引物序列(5′→3′) | 产物大小(bp) |
---|---|---|
Salusin-β | 上游:TCACTTCTCTCCTATCATCCACTCC | 238 |
下游:GGCAGCTTGTCCATCTCATCG | ||
NOX2 | 上游:TTTCCGATCCTATCAAAGTGCC | 216 |
下游:GTACACGTGCGTGTGTCTGTTC | ||
GAPDH | 上游:GTGGAGTCTACTGGCGTCTT | 195 |
下游:TGCTGACAATCTTGAGGGA |
Tab.1 Primer sequences
基因名称 | 引物序列(5′→3′) | 产物大小(bp) |
---|---|---|
Salusin-β | 上游:TCACTTCTCTCCTATCATCCACTCC | 238 |
下游:GGCAGCTTGTCCATCTCATCG | ||
NOX2 | 上游:TTTCCGATCCTATCAAAGTGCC | 216 |
下游:GTACACGTGCGTGTGTCTGTTC | ||
GAPDH | 上游:GTGGAGTCTACTGGCGTCTT | 195 |
下游:TGCTGACAATCTTGAGGGA |
组别 | FBG(mmol/L) | Salusin-β(μg/L) |
---|---|---|
NC组 | 5.74±1.08 | 0.62±0.11 |
DM组 | 26.03±3.15a | 1.35±0.20a |
Ad-Scr shRNA组 | 27.85±3.24a | 1.44±0.18a |
Ad-Salusin-β shRNA组 | 15.29±2.36abc | 0.73±0.12bc |
F | 186.794** | 85.501** |
Tab.2 Comparison of FBG and serum Salusin-β levels between the four groups of rats
组别 | FBG(mmol/L) | Salusin-β(μg/L) |
---|---|---|
NC组 | 5.74±1.08 | 0.62±0.11 |
DM组 | 26.03±3.15a | 1.35±0.20a |
Ad-Scr shRNA组 | 27.85±3.24a | 1.44±0.18a |
Ad-Salusin-β shRNA组 | 15.29±2.36abc | 0.73±0.12bc |
F | 186.794** | 85.501** |
组别 | Ach浓度 | ||||
---|---|---|---|---|---|
1×10-8 mol/L | 1×10-7 mol/L | 1×10-6 mol/L | 1×10-5 mol/L | 1×10-4 mol/L | |
NC组 | 5.15±0.60 | 24.38±2.59 | 61.42±7.30 | 85.09±9.62 | 90.41±9.75 |
DM组 | 5.09±0.55 | 12.57±2.06a | 40.29±5.42a | 53.18±7.15a | 57.62±8.31a |
Ad-Scr shRNA组 | 5.11±0.57 | 11.48±2.15 | 37.68±6.04 | 51.36±6.90 | 54.53±7.42 |
Ad-Salusin-β shRNA组 | 5.14±0.52 | 19.25±2.32bc | 51.33±7.15bc | 68.45±8.74bc | 73.86±9.50bc |
F | 0.029 | 83.675** | 33.542** | 44.256** | 42.445** |
Tab.3 Comparison of endothelium-dependent vasodilation function induced by Ach between the four groups of rats
组别 | Ach浓度 | ||||
---|---|---|---|---|---|
1×10-8 mol/L | 1×10-7 mol/L | 1×10-6 mol/L | 1×10-5 mol/L | 1×10-4 mol/L | |
NC组 | 5.15±0.60 | 24.38±2.59 | 61.42±7.30 | 85.09±9.62 | 90.41±9.75 |
DM组 | 5.09±0.55 | 12.57±2.06a | 40.29±5.42a | 53.18±7.15a | 57.62±8.31a |
Ad-Scr shRNA组 | 5.11±0.57 | 11.48±2.15 | 37.68±6.04 | 51.36±6.90 | 54.53±7.42 |
Ad-Salusin-β shRNA组 | 5.14±0.52 | 19.25±2.32bc | 51.33±7.15bc | 68.45±8.74bc | 73.86±9.50bc |
F | 0.029 | 83.675** | 33.542** | 44.256** | 42.445** |
组别 | SNP浓度 | ||||
---|---|---|---|---|---|
1×10-9 mol/L | 1×10-8 mol/L | 1×10-7 mol/L | 1×10-6 mol/L | 1×10-5 mol/L | |
NC组 | 10.20±1.14 | 24.16±2.74 | 64.48±8.20 | 87.50±10.31 | 94.25±12.18 |
DM组 | 10.15±1.29 | 21.82±2.53 | 59.31±7.45 | 82.36±9.24 | 89.82±10.56 |
Ad-Scr shRNA组 | 9.87±1.05 | 22.30±2.46 | 60.27±8.16 | 84.02±11.37 | 91.40±10.29 |
Ad-Salusin-β shRNA组 | 10.13±1.21 | 24.11±2.80 | 62.54±7.93 | 85.75±9.68 | 93.37±11.44 |
F | 0.190 | 2.545 | 1.027 | 0.568 | 0.383 |
Tab.4 Comparison of endothelium independent vasodilation function induced by SNP between the four groups of rats
组别 | SNP浓度 | ||||
---|---|---|---|---|---|
1×10-9 mol/L | 1×10-8 mol/L | 1×10-7 mol/L | 1×10-6 mol/L | 1×10-5 mol/L | |
NC组 | 10.20±1.14 | 24.16±2.74 | 64.48±8.20 | 87.50±10.31 | 94.25±12.18 |
DM组 | 10.15±1.29 | 21.82±2.53 | 59.31±7.45 | 82.36±9.24 | 89.82±10.56 |
Ad-Scr shRNA组 | 9.87±1.05 | 22.30±2.46 | 60.27±8.16 | 84.02±11.37 | 91.40±10.29 |
Ad-Salusin-β shRNA组 | 10.13±1.21 | 24.11±2.80 | 62.54±7.93 | 85.75±9.68 | 93.37±11.44 |
F | 0.190 | 2.545 | 1.027 | 0.568 | 0.383 |
组别 | TNF-α(ng/g) | IL-6(ng/g) | IL-1β(ng/g) | MDA(μmol/g) | SOD(kU/g) |
---|---|---|---|---|---|
NC组 | 82.45±11.03 | 34.76±5.62 | 15.22±2.41 | 3.24±0.50 | 54.06±6.39 |
DM组 | 275.26±32.58a | 156.35±20.13a | 61.68±7.53a | 9.57±0.76a | 21.83±3.65a |
Ad-Scr shRNA组 | 280.31±35.27 | 164.49±21.58 | 63.19±6.82 | 9.63±0.81 | 22.12±4.08 |
Ad-Salusin-β shRNA组 | 143.19±24.65bc | 82.51±14.07bc | 34.04±5.39bc | 5.80±0.64bc | 40.35±5.54bc |
F | 153.271** | 167.687** | 186.272** | 245.793** | 115.173** |
Tab.5 Comparison of TNF-α, IL-6, IL-1β, MDA and SOD levels in thoracic aorta tissue between the four groups of rats
组别 | TNF-α(ng/g) | IL-6(ng/g) | IL-1β(ng/g) | MDA(μmol/g) | SOD(kU/g) |
---|---|---|---|---|---|
NC组 | 82.45±11.03 | 34.76±5.62 | 15.22±2.41 | 3.24±0.50 | 54.06±6.39 |
DM组 | 275.26±32.58a | 156.35±20.13a | 61.68±7.53a | 9.57±0.76a | 21.83±3.65a |
Ad-Scr shRNA组 | 280.31±35.27 | 164.49±21.58 | 63.19±6.82 | 9.63±0.81 | 22.12±4.08 |
Ad-Salusin-β shRNA组 | 143.19±24.65bc | 82.51±14.07bc | 34.04±5.39bc | 5.80±0.64bc | 40.35±5.54bc |
F | 153.271** | 167.687** | 186.272** | 245.793** | 115.173** |
组别 | ROS | 胸主动脉内膜-中膜 厚度(μm) |
---|---|---|
NC组 | 1.00±0.00 | 45.18±5.26 |
DM组 | 3.58±0.37a | 82.37±9.41a |
Ad-Scr shRNA组 | 3.64±0.42 | 84.20±9.33 |
Ad-Salusin-β shRNA组 | 1.76±0.23bc | 63.56±7.68bc |
F | 229.973** | 61.418** |
Tab.6 Comparison of ROS levels and intima-media thickness of thoracic aorta between the four groups of rats
组别 | ROS | 胸主动脉内膜-中膜 厚度(μm) |
---|---|---|
NC组 | 1.00±0.00 | 45.18±5.26 |
DM组 | 3.58±0.37a | 82.37±9.41a |
Ad-Scr shRNA组 | 3.64±0.42 | 84.20±9.33 |
Ad-Salusin-β shRNA组 | 1.76±0.23bc | 63.56±7.68bc |
F | 229.973** | 61.418** |
组别 | Salusin-β mRNA | NOX2 mRNA |
---|---|---|
NC组 | 1.00±0.00 | 1.00±0.00 |
DM组 | 2.58±0.31a | 2.12±0.23a |
Ad-Scr shRNA组 | 2.63±0.35 | 2.17±0.28 |
Ad-Salusin-β shRNA组 | 1.41±0.22bc | 1.56±0.20bc |
F | 122.565** | 84.649** |
Tab.7 Comparison of Salusin-β and NOX2 mRNA levels in thoracic aorta of rats between the four groups
组别 | Salusin-β mRNA | NOX2 mRNA |
---|---|---|
NC组 | 1.00±0.00 | 1.00±0.00 |
DM组 | 2.58±0.31a | 2.12±0.23a |
Ad-Scr shRNA组 | 2.63±0.35 | 2.17±0.28 |
Ad-Salusin-β shRNA组 | 1.41±0.22bc | 1.56±0.20bc |
F | 122.565** | 84.649** |
组别 | NOX2/ GAPDH | 细胞核NF-κB p65/Lamin B1 | 细胞质NF-κB p65/GAPDH |
---|---|---|---|
NC组 | 0.34±0.05 | 0.45±0.07 | 0.86±0.09 |
DM组 | 0.82±0.09a | 0.90±0.10a | 0.41±0.05a |
Ad-Scr shRNA组 | 0.85±0.07 | 0.92±0.11 | 0.39±0.06 |
Ad-Salusin-β shRNA组 | 0.49±0.06bc | 0.63±0.08bc | 0.72±0.08bc |
F | 157.571** | 73.437** | 125.903** |
Tab.8 Comparison of NOX2, nuclear NF-κB p65 and cytoplasmic NF-κB p65 protein levels in thoracic aorta of rats between the four groups
组别 | NOX2/ GAPDH | 细胞核NF-κB p65/Lamin B1 | 细胞质NF-κB p65/GAPDH |
---|---|---|---|
NC组 | 0.34±0.05 | 0.45±0.07 | 0.86±0.09 |
DM组 | 0.82±0.09a | 0.90±0.10a | 0.41±0.05a |
Ad-Scr shRNA组 | 0.85±0.07 | 0.92±0.11 | 0.39±0.06 |
Ad-Salusin-β shRNA组 | 0.49±0.06bc | 0.63±0.08bc | 0.72±0.08bc |
F | 157.571** | 73.437** | 125.903** |
[1] | SUN D, WANG J, TOAN S, et al. Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance[J]. Angiogenesis, 2022, 25(3):307-329. doi:10.1007/s10456-022-09835-8. |
[2] | MARUHASHI T, HIGASHI Y. Pathophysiological association between diabetes mellitus and endothelial dysfunction[J]. Antioxidants (Basel), 2021, 10(8):1306-1318. doi:10.3390/antiox10081306. |
[3] | LUO E F, LI H X, QIN Y H, et al. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction[J]. World J Diabetes, 2021, 12(2):124-137. doi:10.4239/wjd.v12.i2.124. |
[4] | YASSIEN M, FAWZY O, MAHMOUD E, et al. Serum salusin-β in relation to atherosclerosis and ventricular dysfunction in patients with type 2 diabetes mellitus[J]. Diabetes Metab Syndr, 2020, 14(6):2057-2062. doi:10.1016/j.dsx.2020.10.025. |
[5] | ZHU X, ZHOU Y, CAI W, et al. Salusin-β mediates high glucose-induced endothelial injury via disruption of AMPK signaling pathway[J]. Biochem Biophys Res Commun, 2017, 491(2):515-521. doi:10.1016/j.bbrc.2017.06.126. |
[6] | ZHAO M X, ZHOU B, LING L, et al. Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy[J]. Cell Death Dis, 2017, 8(3):2690-2699. doi:10.1038/cddis.2017.106. |
[7] | SUN H J, CHEN D, WANG P Y, et al. Salusin-β is involved in diabetes mellitus-induced endothelial dysfunction via degradation of peroxisome proliferator-activated receptor gamma[J]. Oxid Med Cell Longev, 2017, 2017:6905217. doi:10.1155/2017/6905217. |
[8] | 张书娅, 邵钟铭, 伍彩霞, 等. Rnd3表达改变对糖尿病大鼠内皮祖细胞生物学特性的影响[J]. 中国病理生理杂志, 2021, 37(5):834-840. |
ZHANG S Y, SHAO Z M, WU C X, et al. Effects of dysregulation of Rnd3 on general biological characteristics of endothelial progenitor cells in diabetic rats[J]. Chinese Journal of Pathophysiology, 2021, 37(5):834-840. doi:10.3969/j.issn.1000-4718.2021.05.008. | |
[9] | CAI Z, YUAN S, ZHONG Y, et al. Amelioration of endothelial dysfunction in diabetes:role of takeda G protein-coupled receptor 5[J]. Front Pharmacol, 2021, 12(1):637051-637060. doi:10.3389/fphar.2021.637051. |
[10] | 武兵兵, 马礼科, 刘秀珠, 等. 中药通过AMPK途径对糖尿病致内皮功能障碍的保护作用及机制[J]. 中药药理与临床, 2022, 38(3):225-230. |
WU B B, MA L K, LIU X Z, et al. Protective effect and mechanism of chinese medicine on endothelial cell dysfunction induced by diabetes mellitus through AMPK pathway[J]. Pharmacology and Clinics of Chinese Materia Medica, 2022, 38(3):225-230. doi:10.13412/j.cnki.zyyl.2022.03.005. | |
[11] | SUN H, ZHANG F, XU Y, et al. Salusin-β promotes vascular calcification via nicotinamide adenine dinucleotide phosphate/reactive oxygen species-mediated Klotho downregulation[J]. Antioxid Redox Signal, 2019, 31(18):1352-1370. doi:10.1089/ars.2019.7723. |
[12] | LU Q B, DU Q, WANG H P, et al. Salusin-β mediates tubular cell apoptosis in acute kidney injury:Involvement of the PKC/ROS signaling pathway[J]. Redox Biol, 2020, 30(1):101411-101427. doi:10.1016/j.redox.2019.101411. |
[13] | SUN S, ZHANG F, PAN Y, et al. A TOR2A gene product:Salusin-β contributes to attenuated vasodilatation of spontaneously hypertensive rats[J]. Cardiovasc Drugs Ther, 2021, 35(1):125-139. doi:10.1007/s10557-020-06983-1. |
[14] | ARKAN A, ATUKEREN P, IKITIMUR B, et al. The importance of circulating levels of salusin-α,salusin-β,and heregulin-β1 in atherosclerotic coronary arterial disease[J]. Clin Biochem, 2021, 87(1):19-25. doi:10.1016/j.clinbiochem.2020.10.003. |
[15] | WANG W J, JIANG X, GAO C C, et al. Salusin-β participates in high glucose-induced HK-2 cell ferroptosis in a Nrf-2-dependent manner[J]. Mol Med Rep, 2021, 24(3):674-685. doi:10.3892/mmr.2021.12313. |
[16] | WANG T, ZHU H, HOU Y, et al. Ketamine attenuates high-glucose-mediated endothelial inflammation in human umbilical vein endothelial cells[J]. Can J Physiol Pharmacol, 2020, 98(3):156-161. doi:10.1139/cjpp-2019-0185. |
[17] | VENU V K P, SAIFEDDINE M, MIHARA K, et al. Metformin prevents hyperglycemia-associated,oxidative stress-induced vascular endothelial dysfunction:essential role for the orphan nuclear receptor human nuclear receptor 4A1(Nur77)[J]. Mol Pharmacol, 2021, 100(5):428-455. doi:10.1124/molpharm.120.000148. |
[18] | SUN H J, ZHAO M X, REN X S, et al. Salusin-β promotes vascular smooth muscle cell migration and intimal hyperplasia after vascular injury via ROS/NFκB/MMP-9 pathway[J]. Antioxid Redox Signal, 2016, 24(18):1045-1057. doi:10.1089/ars.2015.6475. |
[19] | 阳创, 薛莱, 吴阳, 等. NF-κB-iNOS/COX-2信号通路在高糖损伤血管内皮依赖性舒张中的作用[J]. 中国病理生理杂志, 2020, 36(12):2159-2165. |
YANG C, XUE L, WU Y, et al. Activation of NF-κB-iNOS/COX-2 signaling pathways is involved in impaired endothelium-dependent relaxation under high glucose condition[J]. Chinese Journal of Pathophysiology, 2020, 36(12):2159-2165. doi:10.3969/j.issn.1000-4718.2020.12.006. | |
[20] | CHEN H, JIN G. Downregulation of Salusin-β protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p[J]. Bioengineered, 2021, 12(1):6155-6165. doi:10.1080/21655979.2021.1972900. |
[21] | GAO J, LIANG Z, ZHAO F, et al. Triptolide inhibits oxidative stress and inflammation via the microRNA-155-5p/brain-derived neurotrophic factor to reduce podocyte injury in mice with diabetic nephropathy[J]. Bioengineered, 2022, 13(5):12275-12288. doi:10.1080/21655979.2022.2067293. |
[1] | XIANG Jinjie, LYU Maoxin, WANG Mengyue, ZHANG Kun, LI Hao. Molecular mechanisms of Ca2+-induced pyroptosis and adhesion changes of HK-2 cells in the formation of calcium-containing kidney stones [J]. Tianjin Medical Journal, 2024, 52(3): 250-255. |
[2] | YI Na, XIAO Wen, TIAN Yuan, YUAN Lili. Mechanism of BMAL1 attenuating H2O2-induced cardiomyocyte injury [J]. Tianjin Medical Journal, 2024, 52(2): 119-123. |
[3] | CHEN Xilong, WANG Hongjun, SONG Zhengyu, WANG Jing. Arctigenin alleviates neuronal damage of acute cerebral infarction in rats by inhibiting the HMGB1/TLR4/NF-κB pathway [J]. Tianjin Medical Journal, 2023, 51(8): 825-829. |
[4] | LIU Yanwen, LIU Shuiqing, LIN Shaowei, LIU Xiehong. Effect of verbascoside on endothelial dysfunction in atherosclerotic rats by regulating HMGB1/RAGE signal pathway [J]. Tianjin Medical Journal, 2023, 51(12): 1339-1343. |
[5] | CHEN Lixu, XIONG Jia, XIE Kun, ZHU Tingde, ZHONG Zhiying, GUAN Liang, PAN Yongping. Study on the mechanism of Fuzheng Huayu prescription drug-containing serum affecting the activation of activinA/smad signaling pathway in hepatic stellate cells [J]. Tianjin Medical Journal, 2022, 50(7): 707-712. |
[6] | HE Jing, SUN Xiaohui, YANG Li, WU Yuliang . Secretory clusterin attenuated hydrogen peroxide induced cardiomyocyte injury by inhibiting mitophagy #br# [J]. Tianjin Medical Journal, 2022, 50(2): 136-142. |
[7] | MA Zhi, WANG Xinshuang, LIU Yue, WEI Liping, QI Xin. The protective mechanism of differential isomers of glycyrrhetinic acid on cisplatin-induced H9c2 cardiomyocyte injury [J]. Tianjin Medical Journal, 2022, 50(12): 1264-1269. |
[8] | DONG Chao, LI Huayu, OU Haojie, SUN Jia, ZHANG Luyong, LIU Bing△. Fenofibrate improves acute lung injury induced by lipopolysaccharide [J]. Tianjin Medical Journal, 2022, 50(1): 59-66. |
[9] | ZHOU Ping, PEI Wen-di, SUN Yi-fan, YU Yang, JIN Dan△. The protective effect of ginsenoside Rg3 on oxidative stress injury induced by H2O2 in KGN cells#br# [J]. Tianjin Medical Journal, 2021, 49(9): 916-920. |
[10] | OU Hao-jie, SUN Jia, LI Hua-yu, DONG Chao, LIU Bing. RITA induces cell apoptosis of lung squamous carcinoma H226 via the ROS/Src/Stat3 patway [J]. Tianjin Medical Journal, 2021, 49(8): 785-790. |
[11] | LI Dan, GAO Shan. Research progress on the role of NLRP3 inflammasome in myocardial ischemia-reperfusion injury #br# [J]. Tianjin Medical Journal, 2021, 49(6): 656-662. |
[12] | LIXu-dong, MAYong, DENGRun-peng, CANGXue-yu, WUFei-yan, LIYong-tao, JINHai-feng△. The potential effects of astragaloside on hypoxic pulmonary hypertension [J]. Tianjin Medical Journal, 2021, 49(3): 264-268. |
[13] | LIULin-lin. The protective effects of thymoquinone on the mouse hematopoietic system exposed to irradiation [J]. Tianjin Medical Journal, 2021, 49(3): 268-270. |
[14] | LI Tao, WANG Yu, CHEN Wei, XIA Chun-hui, LUN Zhi-qiang. Phthalocyanine zinc photodynamic therapy-induced ROS of Lovo cells #br# [J]. Tianjin Medical Journal, 2020, 48(4): 253-257. |
[15] | ZHANG He, ZHANG Yun, WANG Song-ping. Effects of 1, 25-dihydroxyvitamin D3 on ROS regulating airway#br# remodeling through TGF-β1/(Smad2/3) #br# [J]. Tianjin Medical Journal, 2020, 48(4): 267-270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||