[1] |
CHRISTENSON S A, SMITH B M, BAFADHEL M, et al. Chronic obstructive pulmonary disease[J]. Lancet, 2022, 399(10342):2227-2242. doi:10.1016/S0140-6736(22)00470-6.
|
[2] |
SONG Q, CHEN P, LIU X M. The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD[J]. Respir Res, 2021, 22(1):39. doi:10.1186/s12931-021-01630-1.
|
[3] |
中华医学会呼吸病学分会慢性阻塞性肺疾病学组, 中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会, 陈荣昌, 等. 慢性阻塞性肺疾病诊治指南(2021年修订版)[J]. 中华结核和呼吸杂志, 2021, 44(3):170-205.
|
|
Group of Chronic Obstructive Pulmonary Disease, Respiratory Branch of Chinese Medical Association, Working Committee of Chronic Obstructive Pulmonary Disease, Respiratory Branch of Chinese Medical Association, CHEN R C, et al. Guidelines for the diagnosis and treatment of chronic obstructive pulmonary disease (2021 revision)[J]. Chinese Journal of Tuberculosis and Respiration, 2021, 44(3):170-205. doi:10.3760/cma.j.cn112147-20210109-00031.
|
[4] |
LIU J, GAO J, LIANG Z, et al. Mesenchymal stem cells and their microenvironment[J]. Stem Cell Res Ther, 2022, 13(1):429. doi:10.1186/s13287-022-02985-y.
|
[5] |
ZOU J X, YANG W N, CUI W S, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing[J]. J Nanobiotechnology, 2023, 21(1):14. doi:10.1186/s12951-023-01778-6.
|
[6] |
MOHAN A, AGARWAL S, CLAUSS M, et al. Extracellular vesicles:novel communicators in lung diseases[J]. Respir Res, 2020, 21(1):175. doi:10.1186/s12931-020-01423-y.
|
[7] |
HARRELL C R, JOVICIC N, DJONOV V, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12):1605. doi:10.3390/cells8121605.
|
[8] |
SHEN Z W, HUANG W, LIU J, et al. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases[J]. Front Immunol, 2021, 12:749192. doi:10.3389/fimmu.2021.749192.
|
[9] |
LIN Z J, WU Y L, XU Y T, et al. Mesenchymal stem cell-derived exosomes in cancer therapy resistance:recent advances and therapeutic potential[J]. Mol Cancer, 2022, 21(1):179. doi:10.1186/s12943-022-01650-5.
|
[10] |
ZHOU L, LUO H, LEE J W. Role of extracellular vesicles in lung diseases[J]. Chin Med J, 2022, 135(15):1765-1780. doi:10.1097/CM9.0000000000002118.
|
[11] |
ABBASZADEH H, GHORBANI F, ABBASPOUR-AGHDAM S, et al. Chronic obstructive pulmonary disease and asthma:mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools[J]. Stem Cell Res Ther, 2022, 13(1):262. doi:10.1186/s13287-022-02938-5.
|
[12] |
SHU J Z, LI D F, OUYANG H P, et al. Comparison and evaluation of two different methods to establish the cigarette smoke exposure mouse model of COPD[J]. Sci Rep, 2017, 7(1):15454. doi:10.1038/s41598-017-15685-y.
|
[13] |
KORSGREN M, LINDEN M, ENTWISTLE N, et al. Inhalation of LPS induces inflammatory airway responses mimicking characteristics of chronic obstructive pulmonary disease[J]. Clin Physiol Funct Imaging, 2012, 32(1):71-79. doi:10.1111/j.1475-097X.2011.01058.x.
|
[14] |
SHI M M, YANG Q Y, MONSEL A, et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles[J]. J Extracell Vesicles, 2021, 10(10):e12134. doi:10.1002/jev2.12134.
|
[15] |
CHURG A, COSIO M, WRIGHT J L. Mechanisms of cigarette smoke-induced COPD:insights from animal models[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(4):L612-L631. doi:10.1152/ajplung.00390.2007.
|
[16] |
AGHAPOUR M, RAEE P, MOGHADDAM S J, et al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease:role of cigarette smoke exposure[J]. Am J Respir Cell Mol Biol, 2018, 58(2):157-169. doi:10.1165/rcmb.2017-0200TR.
|
[17] |
JONES B, DONOVAN C, LIU G, et al. Animal models of COPD:what do they tell us?[J]. Respirology, 2017, 22(1):21-32. doi:10.1111/resp.12908.
|
[18] |
LIANG G B, HE Z H. Animal models of emphysema[J]. Chin Med J(Engl), 2019, 132(20):2465-2475. doi:10.1097/CM9.0000000000000469.
|
[19] |
SMITH K R, LEONARD D, MCDONALD J D, et al. Inflammation,mucous cell metaplasia,and Bcl-2 expression in response to inhaled lipopolysaccharide aerosol and effect of rolipram[J]. Toxicol Appl Pharmacol, 2011, 253(3):253-260. doi:10.1016/j.taap.2011.04.001.
|
[20] |
DE SOUZA XAVIER COSTA N, RIBEIRO JÚNIOR G,DOS SANTOS ALEMANY A A, et al. Early and late pulmonary effects of nebulized LPS in mice:An acute lung injury model[J]. PLoS One, 2017, 12(9):e0185474. doi:10.1371/journal.pone.0185474.
|
[21] |
FONCECA A M, ZOSKY G R, BOZANICH E M, et al. Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung[J]. Respir Res, 2018, 19(1):15. doi:10.1186/s12931-017-0701-z.
|
[22] |
何永鸿, 强丽, 王宋平. 阿托伐他汀钙对COPD模型大鼠肺血管重塑的影响及机制探讨[J]. 天津医药, 2021, 49(6):598-602.
|
|
HE Y H, QIANG L, WANG S P. The effect of atorvastatin calcium on pulmonary vascular remodeling in chronic obstructive pulmonary disease rats[J]. Tianjin Med J, 2021, 49(6):598-602. doi:10.11958/202013011.
|
[23] |
ZHU W T, LI C H, DAI T T, et al. Effect of allyl isothiocyanate on oxidative stress in COPD via the AhR/CYP1A1 and Nrf2/NQO1 pathways and the underlying mechanism[J]. Phytomedicine, 2023, 114:154774. doi:10.1016/j.phymed.2023.154774.
|
[24] |
JU J, LI Z, SHI Q. Baicalin inhibits inflammation in rats with chronic obstructive pulmonary disease by the TLR2/MYD88/NF-κBp65 signaling pathway[J]. Evid Based Complement Alternat Med, 2022, 2022:7273387. doi:10.1155/2022/7273387.
|
[25] |
ARMITAGE J, TAN D, MOODLEY Y, et al. Mesenchymal stem cell infusion modulates systemic inflammation in patients with chronic obstructive pulmonary disease(COPD)[J]. Respirology, 2016, 21(Suppl 2):133.
|
[26] |
GAO J, LIANG Y, CHEN J, et al. CXCR4 enhances the inhibitory effects of bone mesenchymal stem cells on lung cell apoptosis in a rat model of smoking-induced COPD[J]. Apoptosis, 2023, 28(3/4):639-652. doi:10.1007/s10495-022-01800-6.
|
[27] |
WEISS D J, SEGAL K, CASABURI R, et al. Effect of mesenchymal stromal cell infusions on lung function in COPD patients with high CRP levels[J]. Respir Res, 2021, 22(1):142. doi:10.1186/s12931-021-01734-8.
|
[28] |
ALVARENGA-NASCIMENTO C R, AADB LEIA, SANTOS T G, et al. Immunotherapeutic strategy with mesenchymal stem cells modulating inflammation in an experimental model of COPD[J]. European Respiratory Journal, 2020, 56(Suppl 64):314.
|
[29] |
VOLAREVIC V, MARKOVIC B S, GAZDIC M, et al. Ethical and safety issues of stem cell-based therapy[J]. Int J Med Sci, 2018, 15(1):36-45. doi:10.7150/ijms.21666.
|
[30] |
TANG Y Y, ZHOU Y, LI H J. Advances in mesenchymal stem cell exosomes:a review[J]. Stem Cell Res Ther, 2021, 12(1):71. doi:10.1186/s13287-021-02138-7.
|
[31] |
CHAN A M L, SAMPASIVAM Y, LOKANATHAN Y. Biodistribution of mesenchymal stem cells (MSCs) in animal models and implied role of exosomes following systemic delivery of MSCs:a systematic review[J]. Am J Transl Res, 2022, 14(4):2147-2161.
|
[32] |
XIA L J, ZHANG C L, LV N Y, et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages[J]. Theranostics, 2022, 12(6):2928-2947. doi:10.7150/thno.69533.
|
[33] |
WAN X, CHEN S, FANG Y, et al. Mesenchymal stem cell-derived extracellular vesicles suppress the fibroblast proliferation by downregulating FZD6 expression in fibroblasts via micrRNA-29b-3p in idiopathic pulmonary fibrosis[J]. J Cell Physiol, 2020, 235(11):8613-8625. doi:10.1002/jcp.29706.
|
[34] |
CHEN Q, LIN J, DENG Z Q, et al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against papain-induced emphysema by preventing apoptosis through activating VEGF-VEGFR2-mediated AKT and MEK/ERK pathways in rats[J]. Regen Ther, 2022, 21:216-224. doi:10.1016/j.reth.2022.07.002.
|
[35] |
YANG L, WEN M, LIU X, et al. Feikang granules ameliorate pulmonary inflammation in the rat model of chronic obstructive pulmonary disease via TLR2/4-mediated NF-κB pathway[J]. BMC Complement Med Ther, 2020, 20(1):170. doi:10.1186/s12906-020-02964-x.
|
[36] |
ROY A, SRIVASTAVA M, SAQIB U, et al. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways[J]. Int Immunopharmacol, 2016, 40:79-89. doi:10.1016/j.intimp.2016.08.026.
|
[37] |
LI Y, ZHAO J, SHAO H, et al. Preventive effect of total flavonoids of Trollius altaicus on a chronic obstructive pulmonary disease rat model based on the TLR4/NF-κB pathway[J]. Ann Transl Med, 2022, 10(4):222. doi:10.21037/atm-22-331.
|