天津医药 ›› 2019, Vol. 47 ›› Issue (6): 594-599.doi: 10.11958/20190489

• 细胞与分子生物学 • 上一篇    下一篇

仿生可降解PCL-PLGA纤维支架负载人脐带间充质干细胞构建组织工程纤维环

夏金健1,2 , 徐宝山2△, 马信龙2 , 张杨2 , 郭悦2 , 杨阳2 , 张维昊1,2 , 杜立龙2 , 邵鹏飞1,2 , 何冠宇1,2   

  1. 1天津医科大学研究生院 (邮编300070); 2天津市天津医院微创脊柱外科
  • 收稿日期:2019-02-22 修回日期:2019-04-25 出版日期:2019-06-15 发布日期:2019-06-15
  • 通讯作者: 夏金健 E-mail:619237089@qq.com
  • 基金资助:
    动态力学刺激对纤维环-髓核组织工程化构建的影响;仿生斜交叠层结构的纳米PCL/SF纤维环支架复合人脐带间充质干细胞 修复纤维环缺损

Biodegradable PCL-PLGA scaffold loaded human umbilical cord mesenchymal stem cells to construct biomimetic tissue engineering annulus

XIA Jin-jian1, 2 , XU Bao-shan2△, MA Xin-long2 , ZHANG Yang2 , GUO Yue2 , YANG Yang2 , ZHANG Wei-hao1, 2 , DU Li-long2 , SHAO Peng-fei 1, 2 , HE Guan-yu1, 2   

  1. 1 Graduate School of Tianjin Medical University, Tianjin 300070, China; 2 Department of Minimally Invasive Spine Surgery, Tianjin Hospital
  • Received:2019-02-22 Revised:2019-04-25 Published:2019-06-15 Online:2019-06-15
  • Contact: Jin-Jian XIA E-mail:619237089@qq.com

摘要: 摘要: 目的 以聚己内酯 (PCL) 和聚乳酸聚乙醇酸共聚物 (PLGA) 为原料构建仿生可降解纤维支架, 评估其作为组织工程纤维环支架的可行性。方法 以PCL、 PLGA混合物为原料, 通过熔融纺丝法制备PCL-PLGA混合支架作为实验组, 纯PCL支架作为对照组。采用扫描电子显微镜 (SEM) 观察成品支架微观结构 (纤维直径和孔径), 测量孔隙率; 使用力学加载装置测量支架的弹性模量; 体外监测支架降解情况; 对支架接种人脐带沃顿胶间充质干细胞(HWJ-MSCs) 后采用CCK-8法和细胞Live/dead染色检测支架的生物相容性。结果 实验组和对照组支架的纤维直径、 孔径和孔隙率组间差异无统计学意义 (P>0.05); SEM镜下可见支架纤维取向性好, 纤维成角60°; 混合支架的压缩弹性模量为 (1.42±0.11) MPa, 拉伸弹性模量 (5.47±0.23) MPa; 纯PCL支架的压缩弹性模量为 (2.36±0.19) MPa, 拉伸弹性模量 (8.95±0.22) MPa; 体外降解检测结果表明混合支架的降解周期和纤维环自我修复过程相适应; CCK-8检测和细胞Live/dead染色结果显示HWJ-MSCs在支架上有良好的增殖能力和活性。结论 采用熔融纺丝法制备的 PCL-PLGA纤维支架能够模拟天然纤维环的微观结构, 具有生物可降解性、 良好的生物相容性和力学性能, 是构建组织工程椎间盘合适的支架载体。

关键词: 组织工程, 间质干细胞, 纤维环, 生物降解, PCL, PLGA

Abstract: Abstract: Objective To construct a biomimetic degradable fiber scaffold with polycaprolactone (PCL) and poly lactic-co-glycolic acid (PLGA) as raw materials, and to evaluate its feasibility as a tissue engineering annulus fibrosus (AF) scaffold. Methods The PCL-PLGA hybrid scaffold was prepared by melt spinning method using PCL and PLGA mixture as the experimental group. The pure PCL scaffold was used as the control group. The microstructure (fiber diameter and pore diameter) of the finished scaffold was observed by scanning electron microscopy (SEM), and the porosity was measured. The elastic modulus of the scaffold was measured using a mechanical loading device. The degradation of the scaffold was monitored in vitro. The biocompatibility of the scaffold was detected by CCK-8 method and cell Live /dead staining after seeding Human Wharton’s jelly-derived mesenchymal stem cells (HWJ-MSCs). Results There were no significant differences in fiber diameter, pore size and porosity between the experimental group and the control group under SEM (P> 0.05). The orientation of the scaffold fiber was good under the microscope, and the fiber angle was 60° . The compression elastic modulus of the hybrid scaffold was (1.42 ± 0.11) MPa, and tensile elastic modulus was (5.47 ± 0.23) MPa. The compressive elastic modulus of the pure PCL scaffold was (2.36±0.19) MPa, and tensile elastic modulus was (8.95±0.22) MPa. The results of in vitro degradation assay indicated that the degradation cycle of the hybrid scaffold was compatible with proliferative capacity and activity on the scaffold. Conclusion The PCL-PLGA fiber scaffold prepared by melt spinning method can simulate the natural AF microstructure, which has biodegradability, good biocompatibility and mechanical properties. It is a suitable scaffold carrier for constructing tissue engineering intervertebral disc. the self-repair process of the annulus fibrosus. CCK-8 assay and Live / dead staining showed that HWJ-MSCs had good

Key words: tissue engineering, mesenchymal stem cells, annulus fibrosus, biodegradation, PCL, PLGA