[1] |
WANG X, SHAPIRO J I. Evolving concepts in the pathogenesis of uraemic cardiomyopathy[J]. Nat Rev Nephrol, 2019, 15(3):159-175. doi:10.1038/s41581-018-0101-8.
|
[2] |
KAESLER N, BABLER A, FLOEGE J, et al. Cardiac remodeling in chronic kidney disease[J]. Toxins (Basel), 2020, 12(3):161. doi:10.3390/toxins12030161.
|
[3] |
RANGASWAMI J, BHALLA V, BLAIR J, et al. Cardiorenal syndrome:classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association[J]. Circulation, 2019, 139(16):e840-e878. doi:10.1161/CIR.0000000000000664.
|
[4] |
XUE J, SUAREZ J S, MINAAI M, et al. HMGB1 as a therapeutic target in disease[J]. J Cell Physiol, 2021, 236(5):3406-3419. doi:10.1002/jcp.30125.
|
[5] |
MA X, ZHANG W, JIANG Y, et al. Paeoniflorin,a natural product with multiple targets in liver diseases-a mini review[J]. Front Pharmacol, 2020, 11:531. doi:10.3389/fphar.2020.00531.
|
[6] |
SUNG I S, PARK S Y, JEONG K Y, et al. Investigation of the preventive effect of calcium on inflammation-mediated choroidal neovascularization[J]. Life Sci, 2019, 233:116727. doi:10.1016/j.lfs.2019.116727.
|
[7] |
GAO R, ZHANG Y, KANG Y, et al. Glycyrrhizin inhibits PEDV infection and proinflammatory cytokine secretion via the HMGB1/TLR4-MAPK p38 Pathway[J]. Int J Mol Sci, 2020, 21(8):2961. doi:10.3390/ijms21082961.
|
[8] |
ZHANG L, WANG F, WANG L, et al. Prevalence of chronic kidney disease in China:A cross-sectional survey[J]. Lancet, 2012, 379(9818):815-822. doi:10.1016/S0140-6736(12)60033-6.
|
[9] |
SARNAK M J, AMANN K, BANGALORE S, et al. Chronic kidney disease and coronary artery disease:JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 74(14):1823-1838. doi:10.1016/j.jacc.2019.08.1017.
|
[10] |
YUAN J, ZOU X R, HAN S P, et al. Prevalence and risk factors for cardiovascular disease among chronic kidney disease patients: results from the Chinese cohort study of chronic kidney disease(C-STRIDE)[J]. BMC Nephrol, 2017, 18(1):23. doi:10.1186/s12882-017-0441-9.
|
[11] |
JIN X, RONG S, YUAN W, et al. High Mobility Group Box 1 promotes aortic calcification in chronic kidney disease via the Wnt/β-Catenin pathway[J]. Front Physiol, 2018, 9:665. doi:10.3389/fphys.2018.00665.
|
[12] |
RAUCCI A, DI MAGGIO S, SCAVELLO F, et al. The Janus face of HMGB1 in heart disease: a necessary update[J]. Cell Mol Life Sci, 2019, 76(2):211-229. doi:10.1007/s00018-018-2930-9.
|
[13] |
谢美丽, 王越晖, 王智昊. 高迁移率族蛋白1与心血管疾病研究进展[J]. 国际老年医学杂志, 2021, 42(6):381-385.
|
|
XIE M L, WANG Y H, WANG Z H. Advances in the Relationship between HMGB1 and Cardiovascular Diseases[J]. International Journal of Geriatrics, 2021, 42(6):381-385. doi:10.3969/j.issn.1674-7593.2021.06.015.
|
[14] |
陈川斌, 黄锋. 高迁移率族蛋白1在心肌缺血再灌注损伤中作用的研究进展[J]. 天津医药, 2020, 48(11):1125-1130.
|
|
CHEN C B, HUANG F. Research progress on the role of high mobility group box-1 in myocardial ischemia reperfusion injury[J]. Tianjin Med J, 2020, 48(11):1125-1130. doi:10.11958/20201796.
|
[15] |
JIANG J, CHEN Q, CHEN X, et al. Magnesium sulfate ameliorates sepsis-induced diaphragm dysfunction in rats via inhibiting HMGB1/TLR4/NF-κB pathway[J]. Neuroreport, 2020, 31(12):902-908. doi:10.1097/WNR.0000000000001478.
|
[16] |
HE M, BIANCHI M E, COLEMAN T R, et al. Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance[J]. Mol Med, 2018, 24(1):21. doi:10.1186/s10020-018-0023-8.
|
[17] |
YANG H, WANG H, JU Z, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling[J]. J Exp Med, 2015, 212(1):5-14. doi:10.1084/jem.20141318.
|
[18] |
XIONG X, GU L, WANG Y, et al. Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms[J]. J Neuroinflammation, 2016, 13(1):241. doi:10.1186/s12974-016-0705-5.
|
[19] |
PAUDEL Y N, ANGELOPOULOU E, SEMPLE B, et al. Potential neuroprotective effect of the HMGB1 nnhibitor glycyrrhizin in neurological disorders[J]. ACS Chem Neurosci, 2020, 11(4):485-500. doi:10.1021/acschemneuro.9b00640.
|
[20] |
CHEN H, GUAN B, WANG B, et al. Glycyrrhizin prevents hemorrhagic transformation and improves neurological outcome in ischemic stroke with delayed thrombolysis through targeting peroxynitrite-mediated HMGB1 signaling[J]. Transl Stroke Res, 2020, 11(5):967-982. doi:10.1007/s12975-019-00772-1.
|
[21] |
ZHAI C L, ZHANG M Q, ZHANG Y, et al. Glycyrrhizin protects rat heart against ischemia-reperfusion injury through blockade of HMGB1-dependent phospho-JNK/Bax pathway[J]. Acta Pharmacol Sin, 2012, 33(12):1477-1487. doi:10.1038/aps.2012.112.
|
[22] |
DU D, YAN J, REN J, et al. Synthesis, biological evaluation, and molecular modeling of glycyrrhizin derivatives as potent high-mobility group box-1 inhibitors with anti-heart-failure activity in vivo[J]. J Med Chem, 2013, 56(1):97-108. doi:10.1021/jm301248y.
|