[1] |
FENG T, HU X, FUKUI Y, et al. Clinical and pathological benefits of scallop-derived plasmalogen in a novel mouse model of Alzheimer's disease with chronic cerebral hypoperfusion[J]. J Alzheimers Dis, 2022, 86(4):1973-1982. doi:10.3233/JAD-215246.
|
[2] |
RAJEEV V, FANN D Y, DINH Q N, et al. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment[J]. Theranostics, 2022, 12(4):1639-1658. doi:10.7150/thno.68304.
|
[3] |
HAN B, JIANG W, LIU H, et al. Upregulation of neuronal PGC-1α ameliorates cognitive impairment induced by chronic cerebral hypoperfusion[J]. Theranostics, 2020, 10(6):2832-2848. doi:10.7150/thno.37119.
|
[4] |
YU W, JIN H, SUN W, et al. Connexin43 promotes angiogenesis through activating the HIF-1α/VEGF signaling pathway under chronic cerebral hypoperfusion[J]. J Cereb Blood Flow Metab, 2021, 41(10):2656-2675. doi:10.1177/0271678X211010354.
|
[5] |
毛雅君, 冯亚莉, 王梦娇, 等. 芦丁衍生物的研究进展[J]. 中国中药杂志, 2021, 46(18):4654-4665.
|
|
MAO Y J, FENG Y L, WANG M J, et al. Research progress on rutin derivatives[J]. China Journal of Chinese Materia Medica, 2021, 46(18):4654-4665. doi:10.19540/j.cnki.cjcmm.20210429.602.
|
[6] |
JAVED H, KHAN M M, AHMAD A, et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type[J]. Neuroscience, 2012, 210:340-352. doi:10.1016/j.neuroscience.2012.02.046.
|
[7] |
LI Y, LI Q, PAN C S, et al. Bushen Huoxue Attenuates diabetes-induced cognitive impairment by improvement of cerebral microcirculation:involvement of RhoA/ROCK/moesin and Src signaling pathways[J]. Front Physiol, 2018, 9:527. doi:10.3389/fphys.2018.00527.
|
[8] |
欧阳梦琪, 舒佳慧, 张棋, 等. 辣椒素对慢性脑低灌注大鼠认知行为受损及海马线粒体-内质网结构偶联表达的影响[J]. 中国病理生理杂志, 2019, 35(8):1393-1402.
|
|
OUYANG M Q, SHU J H, ZHANG Q, et al. Effects of capsaicin on cognitive impairment and mitochondria-associated endoplasmic reticulum membranes in rats with chronic cerebral hypoper-fusion[J]. Chinese Journal of Pathological Physiology, 2019, 35(8):1393-1402. doi:10.3969/j.issn.1000-4718.2019.08.008.
|
[9] |
赵一灿, 张丽华, 赵文, 等. 芦丁对大鼠心肌缺血再灌注损伤的保护作用[J]. 郑州大学学报(医学版), 2017, 52(5):562-566.
|
|
ZHAO Y C, ZHANG L H, ZHAO W, et al. Cardioprotective effect of rutin on myocardial ischemia-reperfusion injury in rats[J]. Journal of Zhengzhou University(Medical Science),2017, 52(5):562-566. doi:10.13705/j.issn.1671-6825.2017.05.011.
|
[10] |
王新斌, 戴恩来, 薛国忠, 等. 基于RhoA/ROCK通路探讨淫羊藿苷对肾病综合征大鼠的保护机制[J]. 中国实验方剂学杂志, 2020, 26(11):78-84.
|
|
WANG X B, DAI E L, XUE G Z, et al. Protective mechanism of icariin on nephrotic syndrome rats based on RhoA/ROCK pathway[J]. Chinese Journal of Experimental Formulae, 2020, 26(11):78-84. doi:10.13422/j.cnki.syfjx.20200901.
|
[11] |
BLOSE M, PICKENS L. The effect of adolescent nicotine exposure on Morris Water Maze spatial learning and retention in the adult male Long-Evans rat:A pilot study[J]. Neurotoxicol Teratol, 2015, 49(1):134. doi:10.1016/j.ntt.2015.04.109.
|
[12] |
LEE J M, PARK J, LEE J H, et al. Low-intensity treadmill exercise protects cognitive impairment by enhancing cerebellar mitochondrial calcium retention capacity in a rat model of chronic cerebral hypoperfusion[J]. J Exerc Rehabil, 2021, 17(5):324-330. doi:10.12965/jer.2142544.272.
|
[13] |
REN C, LIU Y, STONE C, et al. Limb remote ischemic conditioning ameliorates cognitive impairment in rats with chronic cerebral hypoperfusion by regulating glucose transport[J]. Aging Dis, 2021, 12(5):1197-1210. doi:10.14336/AD.2020.1125.
|
[14] |
GUO X, TIAN Y, YANG Y, et al. Pituitary adenylate cyclase-activating polypeptide protects against cognitive impairment caused by chronic cerebral hypoperfusion[J]. Mol Neurobiol, 2021, 58(9):4309-4322. doi:10.1007/s12035-021-02381-2.
|
[15] |
冯爽, 马霄, 冯亚莉, 等. 天然化合物芦丁的治疗潜力[J]. 化学通报(印刷版), 2021, 84(12):1338-1344.
|
|
FENG S, MA X, FENG Y L, et al. Therapeutic potential of natural compound Rutin[J]. Chemistry, 2021, 84(12):1338-1344. doi:10.14159/j.cnki.0441-3776.2021.12.008.
|
[16] |
KUMAR A, RINWA P, DHAR H. Possible nitric oxide modulation in the protective effects of rutin against experimental head trauma-induced cognitive deficits:behavioral, biochemical,and molecular correlates[J]. J Surg Res, 2014, 188(1):268-279. doi: 10.1016/j.jss.2013.12.028.
|
[17] |
石茜, 何守玉, 霍丽霞, 等. 芦丁对D-半乳糖诱导衰老小鼠认知功能的保护作用研究[J]. 浙江医学, 2019, 41(8):763-767.
|
|
SHI Q, HE S Y, HUO L X, et al. Protective effect of rutin on cognitive function of D-galactose-induced aging mice[J]. Zhejiang Medical Journal, 2019, 41(8):763-767. doi:10.12056/j.issn.1006-2785.2019.41.8.2019-18.
|
[18] |
WANG J, NI G, LIU Y, et al. Tanshinone IIA promotes axonal regeneration in rats with focal cerebral ischemia through the inhibition of Nogo-A/NgR1/RhoA/ROCKII/MLC signaling[J]. Drug Des Devel Ther, 2020, 14:2775-2787. doi:10.2147/DDDT.S253280.
|
[19] |
LU W, CHEN Z, WEN J. RhoA/ROCK signaling pathway and astrocytes in ischemic stroke[J]. Metab Brain Dis, 2021, 36(6):1101-1108. doi:10.1007/s11011-021-00709-4.
|
[20] |
陆跃, 赵晖, 姚晓泉, 等. 侯氏黑散中风药、补虚药对脑缺血大鼠轴突生长抑制信号通路Nogo-A/NgR与RhoA/Rock2的影响[J]. 北京中医药大学学报, 2016, 39(12):1017-1021.
|
|
LU Y, ZHAO H, YAO X Q, et al. Effect of wind-dispelling drugs and deficiency-tonifying drugs on axonal growth inhibitory signaling pathway Nogo-A/NgR and RhoA/Rock2 after cerebral ischemia in rats:a developmental study on Hou's Hei San[J]. Journal of Beijing University of Traditional Chinese Medicine, 2016, 39(12):1017-1021. doi:10.3969/j.issn.1006-2157.2016.12.009.
|
[21] |
IYER M, SUBRAMANIAM M D, VENKATESAN D, et al. Role of RhoA-ROCK signaling in Parkinson's disease[J]. Eur J Pharmacol, 2021, 894:173815. doi:10.1016/j.ejphar.2020.173815.
|
[22] |
单海雷, 焦光美, 程曦, 等. 大豆异黄酮基于RhoA/ROCK2信号通路改善MCAO大鼠神经功能损伤[J]. 现代生物医学进展, 2020, 20(17):3233-3238.
|
|
SHAN H L, JIAO G M, CHENG X, et al. Soybean isoflavones improve neurological damage in MCAO rats based on RhoA/ROCK2 signaling pathway[J]. Progress in Modern Biomedicine, 2020, 20(17):3233-3238. doi:10.13241/j.cnki.pmb.2020.17.007.
|