[1] |
DE BOER R A, HULOT J S, TOCCHETTI C G, et al. Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association(HFA)of the European Society of Cardiology(ESC)[J]. Eur J Heart Fail, 2020, 22(12):2272-2289. doi:10.1002/ejhf.2029.
|
[2] |
HERRMANN J, LÓPEZ-FERNÁNDEZ T, LYON A R. Year in cardiovascular medicine:Cardio-oncology 2020-21[J]. Eur Heart J, 2022:ehab891. doi:10.1093/eurheartj/ehab891.
|
[3] |
HEIDARI S, MEHRI S, HOSSEINZADEH H. The genus Glycyrrhiza (Fabaceae family)and its active constituents as protective agents against natural or chemical toxicities[J]. Phytother Res, 2021, 35(12):6552-6571. doi:10.1002/ptr.7238.
|
[4] |
金敏, 吴红金. 甘草次酸对心肌缺血再灌注损伤的影响[J]. 中国药学杂志, 2018, 53(5):359-363.
|
|
JIN M, WU H J. Effect of glycyrrhetinic acid on myocardial ischemia reperfusion injury[J]. Chin Pharm J, 2018, 53(5):359-363. doi:10.11669/cpj.2018.05.008.
|
[5] |
PARISELLA M L, ANGELONE T, GATTUSO A, et al. Glycyrrhizin and glycyrrhetinic acid directly modulate rat cardiac performance[J]. J Nutr Biochem, 2012, 23(1):69-75. doi:10.1016/j.jnutbio.2010.10.011.
|
[6] |
HAN J, SU G H, WANG Y H, et al. 18β-glycyrrhetinic acid improves cardiac diastolic function by attenuating intracellular calcium overload[J]. Curr Med Sci, 2020, 40(4):654-661. doi:10.1007/s11596-020-2232-y.
|
[7] |
颜苗, 李兰芳, 李焕德. 甘草酸、甘草次酸18位差向异构体比较研究的进展[J]. 中药新药与临床药理, 2010, 21(5):562-566.
|
|
YAN M, LI L F, LI H D. Progress in the comparative study of 18 - position differential isomers of glycyrrhizic acid and glycyrrhetinic acid[J]. Traditional Chinese Drug Research & Clinical Pharmacology, 2010, 21(5):562-566. doi:10.19378/j.issn.1003-9783.2010.05.036.
|
[8] |
丁楠, 高晓黎. 18α-甘草酸和18β-甘草酸差向异构体的比较研究概况[J]. 中国现代应用药学, 2011, 28(S1):1312-1315.
|
|
DING N, GAO X L. The comparative study of 18α-glycyrrhizic acid and 18β-glycyrrhizic acid isomers[J]. Chinese Journal of Modern Applied Pharmacy, 2011, 28(S1):1312-1315. doi:10.13748/j.cnki.issn1007-7693.2011.s1.005.
|
[9] |
HERRMANN J, LENIHAN D, ARMENIAN S, et al. Defining cardiovascular toxicities of cancer therapies:An International Cardio-Oncology Society(IC-OS)consensus statement[J]. Eur Heart J, 2022, 43(4):280-299. doi:10.1093/eurheartj/ehab674.
|
[10] |
KUBOTA S, HARA H, HIROI Y. Current status and future perspectives of onco-cardiology: Importance of early detection and intervention for cardiotoxicity, and cardiovascular complication of novel cancer treatment[J]. Glob Health Med, 2021, 3(4):214-225. doi:10.35772/ghm.2021.01024.
|
[11] |
WANG L, ZHANG Y, WAN H, et al. Glycyrrhetinic acid protects H9c2 cells from oxygen glucose deprivation-induced injury through the PI3K/AKt signaling pathway[J]. J Nat Med, 2017, 71(1):27-35. doi:10.1007/s11418-016-1023-z.
|
[12] |
BAŞAK TÜRKMEN N, AŞKIN ÖZEK D, TAŞLIDERE A, et al. Protective role of Diospyros lotus L. in cisplatin-induced cardiotoxicity:Cardiac damage and oxidative stress in rats[J]. Turk J Pharm Sci, 2022, 19(2):132-137. doi:10.4274/tjps.galenos.2021.84555.
|
[13] |
MORELLI M B, BONGIOVANNI C, DA PRA S, et al. Cardiotoxicity of anticancer drugs:Molecular mechanisms and strategies for cardioprotection[J]. Front Cardiovasc Med, 2022, 9:847012. doi:10.3389/fcvm.2022.847012.
|
[14] |
BAYRAK S, AKTAŞ S, ALTUN Z, et al. Antioxidant effect of acetyl-l-carnitine against cisplatin-induced cardiotoxicity[J]. J Int Med Res, 2020, 48(8):300060520951393. doi:10.1177/0300060520951393.
|
[15] |
CHOI Y M, KIM H K, SHIM W, et al. Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ROS generation[J]. PLoS One, 2015, 10(8):e0135083. doi:10.1371/journal.pone.0135083.
|
[16] |
何苗, 李耀伟, 王志琪, 等. 基于细胞线粒体能量代谢研究甘草次酸拮抗乌头碱的心肌毒性作用[J]. 湖南中医药大学学报, 2021, 41(11):1650-1656.
|
|
HE M, LI Y W, WANG Z Q, et al. Glycyrrhetinic acid against the cardiotoxicity of aconitine based on mitochondrial energy metabolism[J]. Journal of Traditional Chinese Medicine University of Hunan, 2021, 41(11):1650-1656. doi:10.3969/j.issn.1674-070X.2021.11.002.
|
[17] |
邢燕, 历飞, 林大勇, 等. 甘草次酸通过PI3K-AKT途径抑制H2O2所致大鼠心肌细胞氧化损伤[J]. 现代生物医学进展, 2018, 18(6):1044-1049.
|
|
XING Y, LI F, LIN D Y, et al. Glycyrrhetinic acid decreases H2O2-induced oxidative injury of H9C2 cells through PI3K-AKT pathway[J]. Progress in Modern Biomedicine, 2018, 18(6):1044-1049. doi:10.13241/j.cnki.pmb.2018.06.009.
|
[18] |
ZHAO L. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction[J]. Anatol J Cardiol, 2019, 22(5):232-239. doi:10.14744/AnatolJCardiol.2019.83710.
|
[19] |
VARGA Z V, FERDINANDY P, LIAUDET L, et al. Drug-induced mitochondrial dysfunction and cardiotoxicity[J]. Am J Physiol Heart Circ Physiol, 2015, 309(9):H1453-1467. doi:10.1152/ajpheart.00554.2015
|
[20] |
MA W, WEI S, ZHANG B, et al. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity[J]. Front Cell Dev Biol, 2020, 8:434. doi:10.3389/fcell.2020.00434.
|