[1] |
ZHANG M, SUI W, XING Y, et al. Angiotensin Ⅳ attenuates diabetic cardiomyopathy via suppressing FoxO1-induced excessive autophagy,apoptosis and fibrosis[J]. Theranostics, 2021, 11(18):8624-8639. doi:10.7150/thno.48561.
|
[2] |
MURTAZA G, VIRK H U H, KHALID M, et al. Diabetic cardiomyopathy - A comprehensive updated review[J]. Prog Cardiovasc Dis, 2019, 62(4):315-326. doi:10.1016/j.pcad.2019.03.003.
|
[3] |
ZHANG X, DONG S, JIA Q, et al. The microRNA in ventricular remodeling: the miR-30 family[J]. Biosci Rep, 2019, 39(8):BSR20190788. doi:10.1042/BSR20190788.
|
[4] |
RITCHIE R H, ABEL E D. Basic mechanisms of diabetic heart disease[J]. Circ Res, 2020, 126(11):1501-1525. doi:10.1161/CIRCRESAHA.120.315913.
|
[5] |
HE Y, CHANG Y, PENG Y, et al. Glibenclamide directly prevents neuroinflammation by targeting SUR1-TRPM4-mediated NLRP3 inflammasome activation in microglia[J]. Mol Neurobiol, 2022, 59(10):6590-6607. doi:10.1007/s12035-022-02998-x.
|
[6] |
YANG J, YANG J, HUANG X, et al. Glibenclamide alleviates LPS-induced acute lung injury through NLRP3 inflammasome signaling pathway[J]. Mediators Inflamm, 2022, 2022:8457010. doi:10.1155/2022/8457010.
|
[7] |
ZHAN X, CHENG L, HUO N, et al. Sodium-glucose cotransporter-2 inhibitor alleviated atrial remodeling in STZ-induced diabetic rats by targeting TLR4 pathway[J]. Front Cardiovasc Med, 2022, 9:908037. doi:10.3389/fcvm.2022.908037.
|
[8] |
VAYKSHNORAYTE M A, OVECHKIN A O, AZAROV J E. The effect of diabetes mellitus on the ventricular epicardial activation and repolarization in mice[J]. Physiol Res, 2012, 61(4):363-370. doi:10.33549/physiolres.932245.
|
[9] |
TIAN J H, WU Q, HE Y X, et al. Zonisamide,an antiepileptic drug,alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress[J]. Acta Pharmacol Sin, 2021, 42(3):393-403. doi:10.1038/s41401-020-0461-z.
|
[10] |
PASSARELLI M, MACHADO U F F. AGEs-induced and endoplasmic reticulum stress/inflammation-mediated regulation of GLUT4 expression and atherogenesis in diabetesmellitus[J]. Cells, 2021, 11(1):104. doi:10.3390/cells11010104.
|
[11] |
MANGAN M S J, OLHAVA E J, ROUSH W R, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018, 17(9):688. doi:10.1038/nrd.2018.149.
|
[12] |
HUANG Y, XU W, ZHOU R. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol, 2021, 18(9):2114-2127. doi:10.1038/s41423-021-00740-6.
|
[13] |
WU C, LU W, ZHANG Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis[J]. Immunity, 2019, 50(6):1401-1411.e4. doi:10.1016/j.immuni.2019.04.003.
|
[14] |
WU X, LIU Y, TU D, et al. Role of NLRP3-inflammasome/caspase-1/galectin-3 pathway on atrial remodeling in diabetic rabbits[J]. J Cardiovasc Transl Res, 2020, 13(5):731-740. doi:10.1007/s12265-020-09965-8.
|
[15] |
QIU X, WANG Q, HOU L, et al. Inhibition of NLRP3 inflammasome by glibenclamide attenuated dopaminergic neurodegeneration and motor deficits in paraquat and maneb-induced mouse Parkinson's disease model[J]. Toxicol Lett, 2021, 349:1-11. doi:10.1016/j.toxlet.2021.05.008.
|
[16] |
SINGH S, SHAIMA A, AHMAD S, et al. Convergence of fructose-induced NLRP3 activation with oxidative stress and ER stress leading to hepatic steatosis[J]. Inflammation, 2023, 46(1):217-233. doi:10.1007/s10753-022-01727-9.
|
[17] |
DWIVEDI D K, JENA G B. NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress,inflammation,DNA damage and insulin signalling pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(4):705-716. doi:10.1007/s00210-019-01773-5.
|
[18] |
HEIJMAN J, MUNA A P, VELEVA T, et al. Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation[J]. Circ Res, 2020, 127(8):1036-1055. doi:10.1161/CIRCRESAHA.120.316710.
|
[19] |
NIE J, TA N, LIU L, et al. Activation of CaMKII via ER-stress mediates coxsackievirus B3-induced cardiomyocyte apoptosis[J]. Cell Biol Int, 2020, 44(2):488-498. doi:10.1002/cbin.11249.
|
[20] |
MARCINIAK S J, CHAMBERS J E, RON D. Pharmacological targeting of endoplasmic reticulum stress in disease[J]. Nat Rev Drug Discov, 2022, 21(2):115-140. doi:10.1038/s41573-021-00320-3.
|
[21] |
REN J, BI Y, SOWERS J R, et al. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases[J]. Nat Rev Cardiol, 2021, 18(7):499-521. doi:10.1038/s41569-021-00511-w.
|
[22] |
HETZ C, ZHANG K, KAUFMAN R J. Mechanisms,regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8):421-438. doi:10.1038/s41580-020-0250-z.
|
[23] |
WADGAONKAR P, CHEN F. Connections between endoplasmic reticulum stress-associated unfolded protein response,mitochondria,and autophagy in arsenic-induced carcinogenesis[J]. Semin Cancer Biol, 2021, 76:258-266. doi:10.1016/j.semcancer.2021.04.004.
|
[24] |
YARIBEYGI H, LHAF F, SATHYAPALAN T, et al. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy:Implications for lowering tissue damage[J]. Life Sci, 2019, 231:116538. doi:10.1016/j.lfs.2019.06.013.
|
[25] |
YARIBEYGI H, SATHYAPALAN T, ATKIN S L, et al. Molecular mechanisms linking oxidative stress and diabetes mellitus[J]. Oxid Med Cell Longev, 2020, 2020:8609213. doi:10.1155/2020/8609213.
|
[26] |
IGHODARO O M. Molecular pathways associated with oxidative stress in diabetes mellitus[J]. Biomed Pharmacother, 2018, 108:656-662. doi:10.1016/j.biopha.2018.09.058.
|
[27] |
LIU X, HUSSAIN R, MEHMOOD K, et al. Mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy[J]. Biomed Res Int, 2022, 2022:6459585. doi:10.1155/2022/6459585.
|
[28] |
POZNYAK A, GRECHKO A V, POGGIO P, et al. The diabetes mellitus-atherosclerosis connection:The role of lipid and glucose metabolism and chronic inflammation[J]. Int J Mol Sci, 2020, 21(5):1835. doi:10.3390/ijms21051835.
|
[29] |
ZEESHAN H M, LEE G H, KIM H R, et al. Endoplasmic reticulum stress and associated ROS[J]. Int J Mol Sci, 2016, 17(3):327. doi:10.3390/ijms17030327.
|