[1] |
JOHNSTON C B, DAGAR M. Osteoporosis in older adults[J]. Med Clin North Am, 2020, 104(5):873-884. doi:10.1016/j.mcna.2020.06.004.
|
[2] |
罗丽梅, 李杰, 杨帆, 等. 骨质疏松发病机制及治疗药物研究进展[J]. 中国骨质疏松杂志, 2020, 26(4):610-614.
|
|
LUO L M, LI J, YANG F, et al. Research progress of mechanism and drug treatment of osteoporosis[J]. Chin J Osteoporos, 2020, 26(4):610-614. doi:10.3969/j.issn.1006-7108.
|
[3] |
KAUR M, NAGPAL M, SINGH M. Osteoblast-n-osteoclast:Making headway to osteoporosis treatment[J]. Curr Drug Targets, 2020, 21(16):1640-1651. doi:10.2174/1389450121666200731173522.
|
[4] |
TUCCI M A, PRIDE Y, STRICKLAND S, et al. Delayed systemic treatment with cannabinoid receptor 2 agonist mitigates spinal cord injury-induced osteoporosis more than acute treatment directly after injury[J]. Neurotrauma Rep, 2021, 2(1):270-284. doi:10.1089/neur.2020.0059.
|
[5] |
PAOLETTA M, MORETTI A, LIGUORI S, et al. Role of the endocannabinoid/endovanilloid system in the modulation of osteoclast activity in Paget's disease of bone[J]. Int J Mol Sci, 2021, 22(18):10158. doi:10.3390/ijms221810158.
|
[6] |
FRAHER D, MANN R J, DUBUISSON M J, et al. The endocannabinoid system and retinoic acid signaling combine to influence bone growth[J]. Mol Cell Endocrinol, 2021, 529:111267. doi:10.1016/j.mce.2021.111267.
|
[7] |
LEGARE C A, RAUP-KONSAVAGE W M, VRANA K E. Therapeutic potential of cannabis,cannabidiol,and cannabinoid-based pharmaceuticals[J]. Pharmacology, 2022, 107(3/4):131-149. doi:10.1159/000521683.
|
[8] |
KEIMPEMA E, DI MARZO V, HARKANY T. Biological basis of cannabinoid medicines[J]. Science, 2021, 374(6574):1449-1450. doi:10.1126/science.abf6099.
|
[9] |
LU H C, MACKIE K. Review of the endocannabinoid system[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2021, 6(6):607-615. doi:10.1016/j.bpsc.2020.07.016.
|
[10] |
ALMOGI-HAZAN O, OR R. Cannabis,the endocannabinoid system and immunity-the journey from the bedside to the bench and back[J]. Int J Mol Sci, 2020, 21(12):4448. doi:10.3390/ijms21124448.
|
[11] |
OSAFO N, YEBOAH O K, ANTWI A O. Endocannabinoid system and its modulation of brain,gut,joint and skin inflammation[J]. Mol Biol Rep, 2021, 48(4):3665-3680. doi:10.1007/s11033-021-06366-1.
|
[12] |
CRISTINO L, BISOGNO T, Di MARZO V. Cannabinoids and the expanded endocannabinoid system in neurological disorders[J]. Nat Rev Neurol, 2020, 16(1):9-29. doi:10.1038/s41582-019-0284-z.
|
[13] |
RAPHAEL-MIZRAHI B, GABET Y. The cannabinoids effect on bone formation and bone healing[J]. Curr Osteoporos Rep, 2020, 18(5):433-438. doi:10.1007/s11914-020-00607-1.
|
[14] |
XIN Y, TANG A, PAN S, et al. Components of the endocannabinoid system and effects of cannabinoids against bone diseases: a mini-review[J]. Front Pharmacol, 2021, 12:793750. doi:10.3389/fphar.2021.793750.
|
[15] |
TAM J, OFEK O, FRIDE E, et al. Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling[J]. Mol Pharmacol, 2006, 70(3):786-792. doi:10.1124/mol.106.026435.
|
[16] |
IDRIS A I, SOPHOCLEOUS A, LANDAO-BASSONGA E, et al. Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells[J]. Cell Metab, 2009, 10(2):139-147. doi:10.1016/j.cmet.2009.07.006.
|
[17] |
SAMIR S M, MALEK H A. Effect of cannabinoid receptors 1 modulation on osteoporosis in a rat model of different ages[J]. J Physiol Pharmacol, 2014, 65(5):687-694.
|
[18] |
GALVE-ROPERH I, CHIURCHIU V, DIAZ-ALONSO J, et al. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation[J]. Prog Lipid Res, 2013, 52(4):633-650. doi:10.1016/j.plipres.2013.05.004.
|
[19] |
GASPERI V, GUZZO T, TOPAI A, et al. Recent advances on type-2 cannabinoid (CB2)receptor agonists and their therapeutic potential[J]. Curr Med Chem, 2023, 30(12):1420-1457. doi:10.2174/0929867329666220825161603.
|
[20] |
ROSSI F, TORTORA C, DI MARTINO M, et al. Alteration of osteoclast activity in childhood cancer survivors:Role of iron and of CB2/TRPV1 receptors[J]. PLoS One, 2022, 17(7):e271730. doi:10.1371/journal.pone.0271730.
|
[21] |
SOPHOCLEOUS A, LANDAO-BASSONGA E, VAN'T HOF R T, et al. The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation[J]. Endocrinology, 2011, 152(6):2141-2149. doi:10.1210/en.2010-0930.
|
[22] |
SOPHOCLEOUS A, IDRIS A I, RALSTON S H. Genetic background modifies the effects of type 2 cannabinoid receptor deficiency on bone mass and bone turnover[J]. Calcif Tissue Int, 2014, 94(3):259-268. doi:10.1007/s00223-013-9793-8.
|
[23] |
BAI J, GE G, WANG Y, et al. A selective CB(2) agonist protects against the inflammatory response and joint destruction in collagen-induced arthritis mice[J]. Biomed Pharmacother, 2019, 116:109025. doi:10.1016/j.biopha.2019.109025.
|
[24] |
BELLINI G, TORELLA M, MANZO I, et al. PKCβII-mediated cross-talk of TRPV1/CB2 modulates the glucocorticoid-induced osteoclast overactivity[J]. Pharmacol Res, 2017, 115:267-274. doi:10.1016/j.phrs.2016.11.039.
|
[25] |
LI F, WANG F. TRPV1 in pain and itch[J]. Adv Exp Med Biol, 2021, 1349:249-273. doi:10.1007/978-981-16-4254-8_12.
|
[26] |
LIU N, LU W, DAI X, et al. The role of TRPV channels in osteoporosis[J]. Mol Biol Rep, 2022, 49(1):577-585. doi:10.1007/s11033-021-06794-z.
|
[27] |
WHYTE L S, RYBERG E, SIMS N A, et al. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo[J]. Proc Natl Acad Sci U S A, 2009, 106(38):16511-16516. doi:10.1073/pnas.0902743106.
|
[28] |
MOSCA M G, MANGINI M, CIOFFI S, et al. Peptide targeting of lysophosphatidylinositol-sensing GPR55 for osteoclastogenesis tuning[J]. Cell Commun Signal, 2021, 19(1):48. doi:10.1186/s12964-021-00727-w.
|
[29] |
MARINO S, CARRASCO G, LI B, et al. JZL184,A monoacylglycerol lipase inhibitor,induces bone loss in a multiple myeloma model of immunocompetent mice[J]. Calcif Tissue Int, 2020, 107(1):72-85. doi:10.1007/s00223-020-00689-0.
|
[30] |
RAPHAEL-MIZRAHI B, ATTAR-NAMDAR M, CHOURASIA M, et al. Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2[J]. Elife, 2022, 11:e65834. doi:10.7554/eLife.65834.
|
[31] |
MENESES C, DIOGENES A R, SIPERT C R. Endocannabinoids modulate production of osteoclastogenic factors by stem cells of the apical papilla in vitro[J]. J Endod, 2022, 48(12):1511-1516. doi:10.1016/j.joen.2022.09.005
|
[32] |
WEI J, LI Y, LIU Q, et al. Betulinic acid protects from bone loss in ovariectomized mice and suppresses RANKL-associated osteoclastogenesis by inhibiting the MAPK and NFATc1 pathways[J]. Front Pharmacol, 2020, 11:1025. doi:10.3389/fphar.2020.01025.
|
[33] |
ZHAO Z, NIAN M, LY H, et al. Advances in anti-osteoporosis polysaccharides derived from medicinal herbs and other edible substances[J]. Am J Chin Med, 2022, 50(2):441-470. doi:10.1142/S0192415X22500173.
|
[34] |
XU S, FENG Y, HE W, et al. Celastrol in metabolic diseases:Progress and application prospects[J]. Pharmacol Res, 2021, 167:105572. doi:10.1016/j.phrs.2021.105572.
|
[35] |
LIU H, ZHOU C, QI D, et al. Inhibiting monoacylglycerol lipase suppresses RANKL-induced osteoclastogenesis and alleviates ovariectomy-induced bone loss[J]. Front Cell Dev Biol, 2021, 9:640867. doi:10.3389/fcell.2021.640867.
|
[36] |
IHN H J, KIM Y S, LIM S, et al. PF-3845,a fatty acid amide hydrolase inhibitor, directly suppresses osteoclastogenesis through ERK and NF-κB pathways in vitro and alveolar bone loss in vivo[J]. Int J Mol Sci, 2021, 22(4):1915. doi:10.3390/ijms22041915.
|
[37] |
KHUNLUCK T, LERTSUWAN K, CHUTOE C, et al. Activation of cannabinoid receptors in breast cancer cells improves osteoblast viability in cancer-bone interaction model while reducing breast cancer cell survival and migration[J]. Sci Rep, 2022, 12(1):7398. doi:10.1038/s41598-022-11116-9.
|