[1] |
POZNYAK A, GRECHKO A V, POGGIO P, et al. The diabetes mellitus-atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation[J]. Int J Mol Sci, 2020, 21(5):1835. doi:10.3390/ijms21051835.
|
[2] |
TABAS I, GARCIA C G, OWENS G K. Recent insights into the cellular biology of atherosclerosis[J]. J Cell Biol, 2015, 209:13-22. doi:10.1083/jcb.201412052.
|
[3] |
TESSA J B. Macrophages in atherosclerosis regression[J]. Arterioscler Thromb Vasc Biol, 2020, 40(1):20-33. doi:10.1161/ATVBAHA.119.312802.
|
[4] |
PEET C, IVETIC A, BROMAGE D I, et al. Cardiac monocytes and macrophages after myocardial infarction[J]. Cardiovasc Res, 2020, 116(6):1101-1112. doi:10.1093/cvr/cvz336.
|
[5] |
MADHAVI J, YUGUANG Z, LU C. Krϋppel-like factors (KLFs) in renal physiology and disease[J]. E Bio Medicine, 2019, 40:743-750. doi:10.1016/j.ebiom.2019.01.021.
|
[6] |
SWEET D R, FAN L, HSIEH PN, et al. Krϋppel-like factors in vascular inflammation:mechanistic insights and therapeutic potential[J]. Front Cardiovasc Med, 2018, 5:6. doi:10.3389/fcvm.2018.00006.
|
[7] |
ZHANG R, ZHOU S J, LI C J, et al. C-reactive protein/oxidised low-density lipoprotein/β2-glycoprotein I complex promotes atherosclerosis in diabetic BALB/c mice via p38mitogen-activated protein kinase signal pathway[J]. Lipids Health Dis, 2013, 12:42. doi:10.1186/1476-511X-12-42.
|
[8] |
NYANDWI J B, KO Y S, JIN H, et al. Rosmarinic acid inhibits oxLDL-induced inflammasome activation under high-glucose conditions through downregulating the p38-FOXO1-TXNIP pathway[J]. Biochem Pharmacol, 2020, 182:114246. doi:10.1016/j.bcp.2020.114246.
|
[9] |
XU X, ZHANG A, LI N, et al. Concentration-dependent diversifcation effects of free cholesterol loading on macrophage viability and polarization[J]. Cell Physiol Biochem, 2015, 37(2):419-431. doi: 10.1159/000430365.
|
[10] |
MANGANELLI V, LONGO A, MATTEI V, et al. Role of ERLINs in the control of cell fate through lipid rafts[J]. Cells, 2021, 10(9):2408. doi:10.3390/cells10092408.
|
[11] |
WANG Y, XIAO S M, ZHOU S J, et al. High glucose aggravates cholesterol accumulation in glomerular endothelial cells through the LXRs/LncRNAOR13C9/ABCA1 regulatory network[J]. Front Physiol, 2020, 19(11):552483. doi:10.3389/fphys.2020.552483.
|
[12] |
KHAWAR M B, GAO H, LI W. Autophagy and lipid metabolism[J]. Adv Exp Med Biol, 2019, 1206:359-374. doi:10.1007/978-981-15-0602-4_17.
|
[13] |
SERGIN I, BHATTACHARYA S, EMANUEL R, et al. Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis[J]. Sci Sign, 2016, 9(409):ra2. doi:10.1126/scisignal.aad5614.
|
[14] |
SWAMINATHAN B, GOIKURIA H, VEGA R, et al. Autophagic marker MAP1LC3B expression levels are associated with carotid atherosclerosis symptomatology[J]. PLoS One, 2014, 9:e115176. doi:10.1371/journal.pone.0115176.
|
[15] |
NAHAPETYAN H, MOULIS M, GROUSSET E, et al. Altered mitochondrial quality control in Atg7-deficient VSMCs promotes enhanced apoptosis and is linked to unstable atherosclerotic plaque phenotype[J]. Cell Death Dis, 2019, 10(2):119. doi:10.1038/s41419-019-1400-0.
|
[16] |
DUBNER A M, LU S, JOLLY A J, et al. Smoothmuscle-derived adventitial progenitor cells direct atherosclerotic plaque composition complexity in a Klf4-dependent manner[J]. JCI Insight, 2023, 8(22):e174639. doi:10.1172/jci.insight.174639.
|
[17] |
WU Q, WANG H, HE F, et al. Depletion of microRNA-92a enhances the role of sevoflurane treatment in reducing myocardial ischemia-reperfusion injury by upregulating KLF4[J]. Cardiovasc Drugs Ther, 2023, 37(6):1053-1064. doi:10.1007/s10557-021-07303-x.
|
[18] |
SALMON M, SPINOSA M, ZEHNER Z E, et al. Klf4,Klf2,and Zfp148 activate autophagy-related genes in smooth muscle cells during aortic aneurysm formation[J]. Phys Rep, 2019, 7:e14058. doi:10.14814/phy2.14058.
|
[19] |
饶超峰, 薛笑楠, 朱明英, 等. 巨噬细胞外泌体通过抑制自噬诱导高血糖对肾小球足细胞的损伤作用[J]. 天津医药, 2021, 49(2):119-125.
|
|
RAO C F, XUE X N, ZHU M Y, et al. Effects of exosomes from high glucose-treated macrophage on the injury of glomerular podocytes via inhibiting autophage[J]. Tianjin Med J, 2021, 49(2):119-125. doi:10.11958/20201991.
|
[20] |
WANG Y, ZHAO B L, ZHANG Y, et al. Krüppel-like factor 4 is induced by rapamycin and mediates the anti-proliferative effect of rapamycin in rat carotid arteries after balloon injury[J]. Br J Pharmacol, 2012, 165(7):2378-2388. doi:10.1111/j.1476-5381.2011.01734.x.
|
[21] |
SETO B. Rapamycin and mTOR:a serendipitous discovery and implications for breast cancer[J]. Clin Transl Med, 2012, 1:29. doi:10.1186/2001-1326-1-29.
|
[22] |
POZNYAK A V, SUKHORUKOV V N, ZHURAVLEV A, et al. Modulating mTOR signaling as a promising therapeutic strategy for atherosclerosis[J]. Int J Mol Sci, 2022, 23(3):1153. doi:10.3390/ijms23031153.
|
[23] |
ZHANG G, HE C, WU Q, et al. Impaired autophagy induced by oxLDL/β2GPI/anti- β2GPI complex through PI3K/AKT/mTOR and eNOS signaling pathways contributes to endothelial cell dysfunction[J]. Oxid Med Cell Longev, 2021, 2021:6662225. doi: 10.1155/2021/6662225.
|
[24] |
ZHAI C, CHENG J, MUJAHID H, et al. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque[J]. PLos One, 2014, 9:e90563. doi:10.1371/journal.pone.0090563.
|