[1] |
HONG Y, CHEN P, GAO J, et al. Sepsis-associated encephalopathy:from pathophysiology to clinical management[J]. Int Immunopharmacol, 2023, 124(Pt A):110800. doi:10.1016/j.intimp.2023.110800.
|
[2] |
SONNEVILLE R, BENGHANEM S, JEANTIN L, et al. The spectrum of sepsis-associated encephalopathy:a clinical perspective[J]. Crit Care, 2023, 27(1):386. doi:10.1186/s13054-023-04655-8.
|
[3] |
XIN Y, TIAN M, DENG S, et al. The key drivers of brain injury by systemic inflammatory responses after sepsis:microglia and neuroinflammation[J]. Mol Neurobiol, 2023, 60(3):1369-1390. doi:10.1007/s12035-022-03148-z.
|
[4] |
庄欣琪, 谢克亮, 于泳浩, 等. 小胶质细胞与脓毒症脑病的研究进展[J]. 天津医药, 2020, 48(4):338-342.
|
|
ZHUANG X Q, XIE K L, YU Y H, et al. Advances in research on microglia and sepsis associated encephalopathy[J]. Tianjin Med J, 2020, 48(4):338-342. doi:10.11958/20193358.
|
[5] |
GAO S, JIANG Y, CHEN Z, et al. Metabolic reprogramming of microglia in sepsis-associated encephalopathy:insights from neuroinflammation[J]. Curr Neuropharmacol, 2023, 21(9):1992-2005. doi:10.2174/1570159X21666221216162606.
|
[6] |
RAUF A, ABU-IZNEID T, IMRAN M, et al. Therapeutic potential and molecular mechanisms of the multitargeted flavonoid fisetin[J]. Curr Top Med Chem, 2023, 23(21):2075-2096. doi:10.2174/1568026623666230710162217.
|
[7] |
WANG G, WANG J J, DU L, et al. Inhibitory kinetics and mechanism of flavonoids extracted from cotinus coggygria scop. Against glioblastoma cancer[J]. Nutr Cancer, 2016, 68(8):1357-1368. doi:10.1080/01635581.2016.1225105.
|
[8] |
KIM N, KWON J, SHIN U S, et al. Fisetin induces the upregulation of AKAP12 mRNA and anti-angiogenesis in a patient-derived organoid xenograft model[J]. Biomed Pharmacother, 2023, 167:115613. doi:10.1016/j.biopha.2023.115613.
|
[9] |
BELTZIG L, CHRISTMANN M, DOBREANU M, et al. Genotoxic and cytotoxic activity of fisetin on glioblastoma cells[J]. Anticancer Res, 2024, 44(3):901-910. doi:10.21873/anticanres.16884.
|
[10] |
WANG X, LI X, ZHOU J, et al. Fisetin suppresses chondrocyte senescence and attenuates osteoarthritis progression by targeting sirtuin 6[J]. Chem Biol Interact, 2024, 390:110890. doi:10.1016/j.cbi.2024.110890.
|
[11] |
LIOU C J, WEI C H, CHEN Y L, et al. Fisetin protects against hepatic steatosis through regulation of the Sirt1/AMPK and fatty acid β-oxidation signaling pathway in high-fat diet-induced obese mice[J]. Cell Physiol Biochem, 2018, 49(5):1870-1884. doi:10.1159/000493650.
|
[12] |
VANDE WALLE L, LAMKANFI M. Drugging the NLRP3 inflammasome:from signalling mechanisms to therapeutic targets[J]. Nat Rev Drug Discov, 2024, 23(1):43-66. doi:10.1038/s41573-023-00822-2.
|
[13] |
FU J, WU H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41:301-316. doi:10.1146/annurev-immunol-081022-021207.
|
[14] |
WU F, TYML K, WILSON J X. iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells[J]. J Cell Physiol, 2008, 217(1):207-214. doi:10.1002/jcp.21495.
|
[15] |
QUOILIN C, MOUITHYS-MICKALAD A, LÉCART S, et al. Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury[J]. Biochim Biophys Acta, 2014, 1837(10):1790-1800. doi:10.1016/j.bbabio.2014.07.005.
|
[16] |
YAZAL T, LEE P Y, CHEN P R, et al. Kurarinone exerts anti-inflammatory effect via reducing ROS production,suppressing NLRP3 inflammasome,and protecting against LPS-induced sepsis[J]. Biomed Pharmacother, 2023, 167:115619. doi:10.1016/j.biopha.2023.115619.
|
[17] |
LI J, YANG D, LI Z, et al. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases[J]. Ageing Res Rev, 2023, 84:101817. doi:10.1016/j.arr.2022.101817.
|
[18] |
JIA S, XU X, ZHOU S, et al. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways[J]. Cell Death Dis, 2019, 10(2):142. doi:10.1038/s41419-019-1366-y.
|