[1] |
GELZINIS T A. Pulmonary Hypertension in 2021:Part I-definition,classification,pathophysiology,and presentation[J]. J Cardiothorac Vasc Anesth, 2022, 36(6):1552-1564. doi:10.1053/j.jvca.2021.06.036.
|
[2] |
MANDRAS S A, MEHTA H S, VAIDYA A. Pulmonary hypertension:A brief guide for clinicians[J]. Mayo Clin Proc, 2020, 95(9):1978-1988. doi:10.1016/j.mayocp.2020.04.039.
|
[3] |
CHEN B, XIA Y, JIANG Y, et al. Non-coding RNA networks in pulmonary arterial hypertension[J]. Pharmacology,2024:1-12. doi:10.1159/000541060.
|
[4] |
ZHANG P F, PEI X, LI K S, et al. Correction to:Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells[J]. Mol Cancer, 2020, 19(1):21. doi:10.1186/s12943-020-1131-y.
|
[5] |
张婧, 文新元, 韦红梅, 等. MuRF1在低氧性肺动脉高压中的作用及机制[J]. 心脏杂志, 2024, 36(1):1-6.
|
|
ZHANG J, WEN X Y, WEI H M, et al. Effects of MuRF1 on hypoxia-induced pulmonary hypertension in mice and underlying mechanism[J]. Chin Heart J, 2024, 36(1):1-6. doi:10.12125/j.chj.202302060.
|
[6] |
吴宾, 杨自更, 张婧, 等. 柚皮素对低氧性肺动脉高压大鼠右心室重塑的影响[J]. 天津医药, 2025, 53(2):129-134.
|
|
WU B, YANG Z G, ZHANG J, et al. Effect of naringenin on right ventricular remodeling induced by hypoxic pulmonary hypertension[J]. Tianjin Med J, 2025, 53(2):129-134. doi:10.11958/20242178.
|
[7] |
BOUSSEAU S, SOBRANO FAIS R, GU S, et al. Pathophysiology and new advances in pulmonary hypertension[J]. BMJ Med, 2023, 2(1):e000137. doi:10.1136/bmjmed-2022-000137.
|
[8] |
THOMPSON A, LAWRIE A. Targeting vascular remodeling to treat pulmonary arterial hypertension[J]. Trends Mol Med, 2017, 23(1):31-45. doi:10.1016/j.molmed.2016.11.005.
|
[9] |
DAVE J, JAGANA V, JANOSTIAK R, et al. Unraveling the epigenetic landscape of pulmonary arterial hypertension:implications for personalized medicine development[J]. J Transl Med, 2023, 21(1):477. doi:10.1186/s12967-023-04339-5.
|
[10] |
HE Y Z, WANG Y X, MA J S, et al. MicroRNAs and their regulators:Potential therapeutic targets in pulmonary arterial hypertension[J]. Vascul Pharmacol, 2023,153:107216. doi:10.1016/j.vph.2023.107216.
|
[11] |
LIU J, YANG Y, LU R, et al. MicroRNA-381-3p signatures as a diagnostic marker in patients with sepsis and modulates sepsis-steered cardiac damage and inflammation by binding HMGB1[J]. Bioengineered, 2021, 12(2):11936-11946. doi:10.1080/21655979.2021.2006967.
|
[12] |
MARON B A, ABMAN S H, ELLIOTT C G, et al. Pulmonary arterial hypertension:Diagnosis,treatment,and novel advances[J]. Am J Respir Crit Care Med, 2021, 203(12):1472-1487. doi:10.1164/rccm.202012-4317SO.
|
[13] |
NAEIJE R, DEDOBBELEER C. Pulmonary hypertension and the right ventricle in hypoxia[J]. Exp Physiol, 2013, 98(8):1247-1256. doi:10.1113/expphysiol.2012.069112.
|
[14] |
CASSADY S J, RAMANI G V. Right heart failure in pulmonary hypertension[J]. Cardiol Clin, 2020, 38(2):243-255. doi:10.1016/j.ccl.2020.02.001.
|
[15] |
张婧, 卫玮, 韦红梅, 等. 水仙环素对低氧性肺动脉高压大鼠右心室重塑的影响及机制[J]. 陕西医学杂志, 2023, 52(7):793-797.
|
|
ZHANG J, WEI W, WEI H M, et al. Effects and mechanism of narciclasine on right ventricular remodeling in hypoxia-induced pulmonary hypertension rats[J]. Shaanxi Medical Journal, 2023, 52(7):793-797. doi:10.3969/j.issn.1000-7377.2023.07.004.
|
[16] |
BAZGIR F, NAU J, NAKHAEI-RAD S, et al. The microenvironment of the pathogenesis of cardiac hypertrophy[J]. Cells, 2023, 12(13):1780. doi:10.3390/cells12131780.
|
[17] |
CANSU D Ü, KORKMAZ C. Pulmonary hypertension in connective tissue diseases:epidemiology,pathogenesis,and treatment[J]. Clin Rheumatol, 2023, 42(10):2601-2610. doi:10.1007/s10067-022-06446-y.
|
[18] |
PRICE L C, WORT S J, PERROS F, et al. Inflammation in pulmonary arterial hypertension[J]. Chest, 2012, 141(1):210-221. doi:10.1378/chest.11-0793.
|
[19] |
HU Y, CHI L, KUEBLER W M, et al. Perivascular inflammation in pulmonary arterial hypertension[J]. Cells, 2020, 9(11):2338. doi:10.3390/cells9112338.
|
[20] |
ZHANG Z Y, QIAN L L, WANG N, et al. Glucose fluctuations promote vascular BK channels dysfunction via PKCα/NF-κB/MuRF1 signaling[J]. J Mol Cell Cardiol, 2020, 145:14-24. doi:10.1016/j.yjmcc.2020.05.021.
|
[21] |
LIU X, WEN Y, LU Y. Targeting MuRF1 to combat skeletal muscle wasting in cardiac cachexia:mechanisms and therapeutic prospects[J]. Med Sci Monit, 2024,30:e945211. doi:10.3390/ijms21186663.
|
[22] |
PERIS-MORENO D, TAILLANDIER D, POLGE C. MuRF1/TRIM63,master regulator of muscle mass[J]. Int J Mol Sci, 2020, 21(18):e945211. doi:10.12659/MSM.945211.
|