[1] |
中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组, 等. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志, 2021, 101(1):11-51.
|
|
The Pulmonary Embolism and Pulmonary Vascular Disease Group of Chinese Society of Respiratory Diseases, Chinese Medical Doctor Association Pulmonary Embolism and Pulmonary Vascular Disease Working Committee, National Cooperative Group for Prevention and Treatment of Pulmonary Embolism and Pulmonary Vascular Disease, et al. Chinese guidelines for the diagnosis and treatment of pulmonary hypertension(The 2021 version)[J]. Natl Med J China, 2021, 101(1):11-51. doi:10.3760/cma.j.cn112137-20201008-02778.
|
[2] |
BRITO J, SIQUES P, PENA E. Long-term chronic intermittent hypoxia:a particular form of chronic high-altitude pulmonary hypertension[J]. Pulm Circ, 2020, 10(Suppl 1):5-12. doi:10.1177/2045894020934625.
|
[3] |
MONDÉJAR-PARREÑO G, COGOLLUDO A, PEREZ-VIZCAINO F. Potassium(K+)channels in the pulmonary vasculature:implications in pulmonary hypertension physiological,pathophysiological and pharmacological regulation[J]. Harmacol Ther, 2021, 225:107835. doi:10.1016/j.pharmthera.2021.107835.
|
[4] |
DOGAN M F, YILDIZ O, ARSLAN S O, et al. Potassium channels in vascular smooth muscle:a pathophysiological and pharmacological perspective[J]. Fundam Clin Pharmaco, 2019, 33(5):504-523. doi:10.1111/FCP.12461.
|
[5] |
SONG S, BABICHEVA A, ZHAO T, et al. Notch enhances Ca(2+) entry by activating calcium-sensing receptors and inhibiting voltage-gated K(+) channelsAm J Physiol Cell Physiol, 2020, 318(5):954-968. doi:10.1152/ajpcell.00487.201.
|
[6] |
DENG L, CHEN J, WANG T, et al. PDGF/MEK/ERK axis represses Ca(2+) clearance via decreasing the abundance of plasma membrane Ca(2+) pump PMCA4 in pulmonary arterial smooth muscle cells[J]. Am J Physiol Cell Physiol, 2021, 320(1):66-79. doi:10.1152/ajpcell.0290.2020.
|
[7] |
MEI L, ZHENG Y M, SONG T, et al. Rieske iron-sulfur protein induces FKBP12.6/RyR2 complex remodeling and subsequent pulmonary hypertension through NF-κB/cyclin D1 pathway[J]. Nat Commun, 2020, 11(1):3527. doi:10.1038/s41467-020-17314-1.
|
[8] |
HE Y, FANG X, SHI J, et al. Apigenin attenuates pulmonary hypertension by inducing mitochondria-dependent apoptosis of PASMCs via inhibiting the hypoxia inducible factor 1alpha-KV1.5 channel pathway[J]. Chem Biol Interact, 2020, 317:108942. doi:10.1016/j.cbi.2020.108942.
|
[9] |
ZHANG R, LI Z, LIU C, et al. Pretreatment with the active fraction of Rhodiola tangutica(Maxim.)S.H. Fu rescues hypoxia-induced potassium channel inhibition in rat pulmonary artery smooth muscle cells[J]. J Ethnopharmacol, 2022, 283:114734. doi:10.1016/j.jep.2021.114734.
|
[10] |
MONDÉJAR-PARREÑO G, BARREIRA B, CALLEJO M, et al. Uncovered contribution of Kv7 channels to pulmonary vascular tone in pulmonary arterial hypertension[J]. Hypertension, 2020, 76(4):1134-1146. doi:10.1161/HYPERTENSIONAHA.120.15221.
|
[11] |
WU W, LI Y, XU D Q. Role of ROS/Kv/HIF axis in the development of hypoxia-induced pulmonary hypertension[J]. Chin Med Sci J, 2017, 32(4):47-53. doi:10.24920/J1001-9294.2017.037.
|
[12] |
BABICHEVA A, AYON R J, ZHAO T, et al. MicroRNA-mediated downregulation of K(+)channels in pulmonary arterial hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(1):10-26. doi:10.1152/ajplung.00010.2019.
|
[13] |
MONDÉJAR-PARREÑO G, CALLEJO M, BARREIRA B, et al. miR-1 is increased in pulmonary hypertension and downregulates Kv1.5 channels in rat pulmonary arteries[J]. J Physiol, 2019, 597(4):1185-1197. doi:10.1113/JP276054.
|
[14] |
HAYABUCHI Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension[J]. Pediatr Cardiol, 2017, 38(1):1-14. doi:10.1007/s00246-016-1491-1497.
|
[15] |
GUO S, SHEN Y, HE G, et al. Involvement of Ca(2+)-activated K(+) channel 3.1 in hypoxia-induced pulmonary arterial hypertension and therapeutic effects of TRAM-34 in rats[J]. Biosci Rep, 2017,37(4):BSR20170763. doi:10.1042/BSR20170763.
|
[16] |
MILARA J, BALLESTER B, MORELL A, et al. JAK2 mediates lung fibrosis,pulmonary vascular remodelling and hypertension in idiopathic pulmonary fibrosis:an experimental study[J]. Thorax, 2018, 73(6):519-529. doi:10.1136/thoraxjnl-2017-210728.
|
[17] |
HU H, DING Y, WANG Y, et al. MitoK(ATP)channels promote the proliferation of hypoxic human pulmonary artery smooth muscle cells via the ROS/HIF/miR-210/ISCU signaling pathway[J]. Exp Ther Med, 2017, 14(6):6105-6112. doi:10.3892/etm.2017.5322.
|
[18] |
PANDIT L M, LLOYD E E, REYNOLDS J O, et al. TWIK-2 channel deficiency leads to pulmonary hypertension through a Rho-kinase-mediated process[J]. Hypertension, 2014, 64(6):1260-1265. doi:10.1161/HYPERTENSIONAHA.114.03406.
|
[19] |
CALLEJO M, MONDÉJAR-PARREÑO G, MORALES-CANO D, et al. Vitamin D deficiency downregulates TASK-1 channels and induces pulmonary vascular dysfunction[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 319(4):627-640. doi:10.1152/ajplung.00475.2019.
|
[20] |
HAN L, SONG N, HU X, et al. Inhibition of RELM-beta prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline[J]. Life Sci, 2020, 246:117419. doi:10.1016/j.lfs.2020.117419.
|
[21] |
LAMBERT M, CAPUANO V, BOET A, et al. Characterization of Kcnk3-mutated rat,a novel model of pulmonary hypertension[J]. Circ Res, 2019, 125(7):678-695. doi:10.1161/CIRCRESAHA.119.314793.
|
[22] |
HAO X, LI H, ZHANG P, et al. Down-regulation of lncRNA Gas5 promotes hypoxia-induced pulmonary arterial smooth muscle cell proliferation by regulating KCNK3 expression[J]. Eur J Pharmacol, 2020, 889:173618. doi:10.1016/j.ejphar.2020.173618.
|
[23] |
HUMBERT M, KOVACS G, HOEPER M M, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Heart J, 2023, 61(1):2200879. doi:10.1183/13993003.00879-2022.
|
[24] |
SITBON O, GOMBERG-MAITLAND M, GRANTON J, et al. Clinical trial design and new therapies for pulmonary arterial hypertension[J]. Eur Respir J, 2019, 53(1):1801908. doi:10.1183/13993003.01908-2018.
|
[25] |
RUOPP N F, COCKRILL B A. Diagnosis and treatment of pulmonary arterial hypertension:a review[J]. JAMA, 2022, 327(14):1379-1391. doi:10.1001/jama.2022.4402.
|
[26] |
PITRE T, SU J, CUI S, et al. Medications for the treatment of pulmonary arterial hypertension: a systematic review and network meta-analysis[J]. Eur Respir Rev, 2022, 31(165):220036. doi:10.1183/16000617.0036-2022.
|
[27] |
CHRISTOU H, KHALIL R A. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies[J]. Am J Physiol Heart Circ Physiol, 2022, 322(5):H702-H724. doi:10.1152/ajpheart.00021.2022.
|
[28] |
LE RIBEUZ H, CAPUANO V, GIRERD B, et al. Implication of potassium channels in the pathophysiology of pulmonary arterial hypertension[J]. Biomolecules, 2020, 10(9):1261. doi:10.3390/biom10091261.
|
[29] |
CUNNINGHAM K P, CLAPP L H, MATHIE A, et al. The prostacyclin analogue,treprostinil,used in the treatment of pulmonary arterial hypertension,is a potent antagonist of TREK-1 and TREK-2 potassium channels[J]. Front Pharmacol, 2021, 12:705421. doi:10.3389/fphar.2021.705421.
|
[30] |
TIAN H, FAN F, GENG J, et al. Beraprost upregulates KV channel expression and function via EP4 receptor in pulmonary artery smooth muscle cells obtained from rats with hypoxia-induced pulmonary hypertension[J]. J Vasc Res, 2019, 56(4):204-214. doi:10.1159/000500424.
|
[31] |
MONDÉJAR-PARREÑO G, MORAL-SANZ J, BARREIRA B, et al. Activation of Kv7 channels as a novel mechanism for NO/cGMP-induced pulmonary vasodilation[J]. Br J Pharmacol, 2019, 176(13):2131-2145. doi:10.1111/bph.14662.
|
[32] |
BOCK C, LINK A. How to replace the lost keys? Strategies toward safer KV7 channel openers[J]. Future Med Chem, 2019. doi:10.4155/fmc-2018-0350.
|
[33] |
RASHID J, NOZIK-GRAYCK E, MCMURTRY IF, et al. Inhaled combination of sildenafil and rosiglitazone improves pulmonary hemodynamics,cardiac function,and arterial remodeling[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316:119-130. doi:10.1152/ajplung.00381.2018.
|
[34] |
HE M, CUI T, CAI Q, et al. Iptakalim ameliorates hypoxia-impaired human endothelial colony-forming cells proliferation,migration,and angiogenesis via Akt/eNOS pathways[J]. Pulm Circ, 2019, 9(3):2045894019875417. doi:10.1177/2045894019875417.
|
[35] |
王江涛, 马博华, 沈会华, 等. 常山酮对高原肺动脉高压模型大鼠心肺功能的影响及其机制研究[J]. 天津医药, 2023, 51(1):41-44.
|
|
WANG J T, MA B H, SHEN H H, et al. The effect of halofuginone on cardiopulmonary function and its mechanism in rats with high-altitude pulmonary hypertension[J]. Tianjin Med J, 2023, 51(1):41-44. doi:10.11958/20220965.
|
[36] |
JAIN P P, ZHAO T, XIONG M, et al. Halofuginone,a promising drug for treatment of pulmonary hypertension[J]. Br J Pharmacol, 2021, 178(17):3373-3394. doi:10.1111/bph.15442.
|
[37] |
FAN F, ZOU Y, WANG Y, et al. Sanguinarine reverses pulmonary vascular remolding of hypoxia-induced PH via survivin/HIF1α-attenuating Kv channels[J]. Front Pharmacol, 2021, 12:768513. doi:10.3389/fphar.2021.768513.
|
[38] |
FUSI F, TREZZA A, TRAMAGLINO M, et al. The beneficial health effects of flavonoids on the cardiovascular system:focus on K(+) channels[J]. Pharmacol Res, 2020, 152:104625. doi:10.1016/j.phrs.2019.104625.
|
[39] |
DING L, JIA C, ZHANG Y, et al. Baicalin relaxes vascular smooth muscle and lowers blood pressure in spontaneously hypertensive rats[J]. Biomed Pharmacother, 2019, 111:325-330. doi:10.1016/j.biopha.2018.12.086.
|
[40] |
LI W, DONG M, GUO P, et al. Luteolin-induced coronary arterial relaxation involves activation of the myocyte voltage-gated K(+) channels and inward rectifier K(+) channels[J]. Life Sci, 2019, 221:233-240. doi:10.1016/j.lfs.2019.02.028.
|
[41] |
ZHENG L, LIU M, WEI M, et al. Tanshinone IIA attenuates hypoxic pulmonary hypertension via modulating KV currents[J]. Respir Physiol Neurobiol, 2015, 205:120-128. doi:10.1016/j.resp.2014.09.025.
|