| [1] |
GALLOWAY S E, PAUL P, MACCANNELL D R, et al. Emergence of SARS-CoV-2 B. 1.1.7 Lineage - United States,December 29,2020-January 12,2021[J]. MMWR Morb Mortal Wkly Rep, 2021, 70(3):95-99. doi:10.15585/mmwr.mm7003e2.
|
| [2] |
FRAMPTON D, RAMPLING T, CROSS A, et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London,UK:a whole-genome sequencing and hospital-based cohort study[J]. Lancet Infect Dis, 2021, 21(9):1246-1256. doi:10.1016/S1473-3099(21)00170-5.
|
| [3] |
RAMÍREZ J D, MUÑOZ M, PATIÑO L H, et al. Will the emergent SARS-CoV2 B.1.1.7 lineage affect molecular diagnosis of COVID-19?[J]. J Med Virol, 2021, 93(5):2566-2568. doi:10.1002/jmv.26823.
|
| [4] |
JIAN M J, CHUNG H Y, CHANG C K, et al. SARS-CoV-2 variants with T135I nucleocapsid mutations may affect antigen test performance[J]. Int J Infect Dis, 2022, 114:112-114. doi:10.1016/j.ijid.2021.11.006.
|
| [5] |
C CASERTA L, MITCHELL P K, PLOCHARCZYK E, et al. Identification of a SARS-CoV-2 Lineage B1.1.7 Virus in New York following return travel from the United Kingdom[J]. Microbiol Resour Announc, 2021, 10(9):e00097-00021. doi:10.1128/MRA.00097-21.
|
| [6] |
WU H, XING N, MENG K, et al. Nucleocapsid mutations R203K/G204R increase the infectivity,fitness,and virulence of SARS-CoV-2[J]. Cell Host Microbe, 2021, 29(12):1788-1801.e6. doi:10.1016/j.chom.2021.11.005.
|
| [7] |
LOKUGAMAGE K G, ZHOU Y, ALVARADO R E, et al. Convergent evolution in nucleocapsid facilitated SARS-CoV-2 adaptation for human infection[J]. J Virol, 2025, 99(7):e0209124. doi:10.1128/jvi.02091-24.
|
| [8] |
World Health Organization. Clinical management of COVID-19:Living guideline[EB/OL]. (2023-08-18)[2025-05-10]. https://iris.who.int/bitstream/handle/10665/372288/WHO-2019-nCoV-clinical-2023.2-eng.pdf?sequence=1.
|
| [9] |
CHAN J F, YUAN S, CHU H, et al. COVID-19 drug discovery and treatment options[J]. Nat Rev Microbiol, 2024, 22(7):391-407. doi:10.1038/s41579-024-01036-y.
|
| [10] |
WANG Y T, LONG X Y, DING X, et al. Novel nucleocapsid protein-targeting phenanthridine inhibitors of SARS-CoV-2[J]. Eur J Med Chem, 2022, 227:113966. doi:10.1016/j.ejmech.2021.113966.
|
| [11] |
GONZALEZ-REICHE A S, ALSHAMMARY H, SCHAEFER S, et al. Sequential intrahost evolution and onward transmission of SARS-CoV-2 variants[J]. Nat Commun, 2023, 14(1):3235. doi:10.1038/s41467-023-38867-x.
|
| [12] |
DERONDE S, DEULING H, PARKER J, et al. Identification of a Novel SARS-CoV-2 Strain with Truncated Protein in ORF8 Gene by Next Generation Sequencing[J]. Sci Rep, 2022, 12(1):4631. doi: 10.1038/s41598-022-08780-2.
|
| [13] |
PERCHETTI G A, ZHU H, MILLS M G, et al. Specific allelic discrimination of N501Y and other SARS-CoV-2 mutations by ddPCR detects B.1.1.7 lineage in Washington State[J]. J Med Virol, 2021, 93(10):5931-41. doi:10.1002/jmv.27155.
|
| [14] |
SCHOEFBAENKER M, GÜNTHER T, LORENTZEN E U, et al. Characterisation of the antibody-mediated selective pressure driving intra-host evolution of SARS-CoV-2 in prolonged infection[J]. PLoS Pathog, 2024, 20(10):e1012624. doi:10.1371/journal.ppat.1012624.
|
| [15] |
MARTYNOVA E, HAMZA S, MARKELOVA M, et al. Immunogenic SARS-CoV-2 S and N protein peptide and cytokine combinations as biomarkers for early prediction of fatal COVID-19[J]. Front Immunol, 2022,13:830715. doi:10.3389/fimmu.2022.830715.
|
| [16] |
LÓPEZ-MUÑOZ A D, KOSIK I, HOLLY J, et al. Cell surface SARS-CoV-2 nucleocapsid protein modulates innate and adaptive immunity[J]. Sci Adv, 2022, 8(31):eabp9770. doi:10.1126/sciadv.abp9770.
|
| [17] |
NOVICK D, COHEN B, RUBINSTEIN M. The human interferon alpha/beta receptor: characterization and molecular cloning[J]. Cell, 1994, 77(3):391-400. doi:10.1016/0092-8674(94)90154-6.
|
| [18] |
WANG S, DAI T, QIN Z, et al. Targeting liquid-liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity[J]. Nat Cell Biol, 2021, 23(7):718-32. doi:10.1038/s41556-021-00710-0.
|
| [19] |
MU J, FANG Y, YANG Q, et al. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2[J]. Cell Discov, 2020,6:65. doi:10.1038/s41421-020-00208-3.
|
| [20] |
WU W, CHENG Y, ZHOU H, et al. The SARS-CoV-2 nucleocapsid protein:its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics[J]. Virol J, 2023, 20(1):6. doi:10.1186/s12985-023-01968-6.
|
| [21] |
QUAGLIA F, SALLADINI E, CARRARO M, et al. SARS-CoV-2 variants preferentially emerge at intrinsically disordered protein sites helping immune evasion[J]. FEBS J, 2022, 289(14):4240-4250. doi:10.1111/febs.16379.
|
| [22] |
SYED A M, CILING A, CHEN I P, et al. SARS-CoV-2 evolution balances conflicting roles of N protein phosphorylation[J]. PLoS Pathog, 2024, 20(11):e1012741. doi:10.1371/journal.ppat.1012741.
|
| [23] |
STUWE H, REARDON P N, YU Z, et al. Phosphorylation in the Ser/Arg-rich region of the nucleocapsid of SARS-CoV-2 regulates phase separation by inhibiting self-association of a distant helix[J]. J Biol Chem, 2024, 300(6):107354. doi:10.1016/j.jbc.2024.107354.
|
| [24] |
CARLSON C R, ASFAHA J B, GHENT C M, et al. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions[J]. Mol Cell, 2020, 80(6):1092-103 e4. doi:10.1016/j.molcel.2020.11.025.
|