[1] |
World Health Organization. WHO Coronavirus(COVID-19)Dashboard[EB/OL]. (2022-05-25)[2022-05-25]. https://covid19.who.int.
|
[2] |
GORDON D E, HIATT J, BOUHADDOU M, et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms[J]. Science, 2020, 370(6521):eabe9403. doi: 10.1126/science.abe9403.
|
[3] |
VALCARCEL A, BENSUSSEN A, ALVAREZ-BUYLLA E R, et al. Structural analysis of SARS-CoV-2 ORF8 protein:pathogenic and therapeutic implications[J]. Front Genet, 2021, 12:693227. doi: 10.3389/fgene.2021.693227.
|
[4] |
FLOWER T G, BUFFALO C Z, HOOY R M, et al. Structure of SARS-CoV-2 ORF8,a rapidly evolving immune evasion protein[J]. Proc Natl Acad Sci U S A, 2021, 118(2):e2021785118. doi: 10.1073/pnas.2021785118.
|
[5] |
TAN Y, SCHNEIDER T, LEONG M, et al. Novel immunoglobulin domain proteins provide insights into evolution and pathogenesis of SARS-CoV-2-related viruses[J]. mBio, 2020, 11(3):e00760-20. doi: 10.1128/mBio.00760-20.
|
[6] |
WANG X, LAM J Y, WONG W M, et al. Accurate diagnosis of COVID-19 by a novel immunogenic secreted SARS-CoV-2 ORF8 protein[J]. mBio, 2020, 11(5):e02431-20. doi: 10.1128/mBio.02431-20.
|
[7] |
ZINZULA L. Lost in deletion:The enigmatic ORF8 protein of SARS-CoV-2[J]. Biochem Biophys Res Commun, 2021, 538:116-124. doi: 10.1016/j.bbrc.2020.10.045.
|
[8] |
LI J Y, LIAO C H, WANG Q, et al. The ORF6,ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway[J]. Virus Res, 2020, 286:198074. doi: 10.1016/j.virusres.2020.198074.
|
[9] |
RASHID F, SULEMAN M, SHAH A, et al. Mutations in SARS-CoV-2 ORF8 altered the bonding network with interferon regulatory factor 3 to evade host immune system[J]. Front Microbiol, 2021, 12:703145. doi: 10.3389/fmicb.2021.703145.
|
[10] |
RASHID F, DZAKAH E E, WANG H, et al. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta[J]. Virus Res, 2021, 296:198350. doi: 10.1016/j.virusres.2021.198350.
|
[11] |
ZHANG Y, CHEN Y, LI Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Iota[J]. Proc Natl Acad Sci U S A, 2021, 118(23):e2024202118. doi: 10.1073/pnas.2024202118.
|
[12] |
MCGEACHY M J, CUA D J, GAFFEN S L. The IL-17 family of cytokines in health and disease[J]. Immunity, 2019, 50(4):892-906. doi: 10.1016/j.immuni.2019.03.021.
|
[13] |
LIN X, FU B, YIN S, et al. ORF8 contributes to cytokine storm during SARS-CoV-2 infection by activating IL-17 pathway[J]. iScience, 2021, 24(4):102293. doi: 10.1016/j.isci.2021.102293.
|
[14] |
SUNG S C, CHAO C Y, JENG K S, et al. The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6[J]. Virology, 2009, 387(2):402-413. doi: 10.1016/j.virol.2009.02.021.
|
[15] |
MUTH D, CORMAN V M, ROTH H, et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission[J]. Sci Rep, 2018, 8(1):15177. doi: 10.1038/s41598-018-33487-8.
|
[16] |
OOSTRA M, DE HAAN C A, ROTTIER P J. The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8[J]. J Virol, 2007, 81(24):13876-13888. doi: 10.1128/JVI.01631-07.
|
[17] |
HELENIUS A, AEBI M. Intracellular functions of N-linked glycans[J]. Science, 2001, 291(5512):2364-2369. doi: 10.1126/science.291.5512.2364.
|
[18] |
LE T M, WONG H H, TAY F P, et al. Expression, post-translational modification and biochemical characterization of proteins encoded by subgenomic mRNA8 of the severe acute respiratory syndrome coronavirus[J]. FEBS J, 2007, 274(16):4211-4222. doi: 10.1111/j.1742-4658.2007.05947.x.
|
[19] |
WONG H H, FUNG T S, FANG S, et al. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3[J]. Virology, 2018, 515:165-175. doi: 10.1016/j.virol.2017.12.028.
|
[20] |
CHEN C Y, PING Y H, LEE H C, et al. Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis[J]. J Infect Dis, 2007, 196(3):405-415. doi: 10.1086/519166.
|
[21] |
PAL A, DOBHAL S, DEY K K, et al. Polymorphic landscape of SARS-CoV-2 genomes isolated from Indian population in 2020 demonstrates rapid evolution in ORF3a, ORF8, nucleocapsid phosphoprotein and spike glycoprotein[J]. Comput Biol Chem, 2021, 95:107594. doi: 10.1016/j.compbiolchem.2021.107594.
|
[22] |
GONG Y N, TSAO K C, HSIAO M J, et al. SARS-CoV-2 genomic surveillance in Taiwan revealed novel ORF8-deletion mutant and clade possibly associated with infections in Middle East[J]. Emerg Microbes Infect, 2020, 9(1):1457-1466. doi: 10.1080/22221751.2020.1782271.
|
[23] |
SU Y C F, ANDERSON D E, YOUNG B E, et al. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2[J]. mBio, 2020, 11(4):e01610-e01620. doi: 10.1128/mBio.01610-20.
|
[24] |
PEREIRA F. SARS-CoV-2 variants combining spike mutations and the absence of ORF8 may be more transmissible and require close monitoring[J]. Biochem Biophys Res Commun, 2021, 550:8-14. doi: 10.1016/j.bbrc.2021.02.080.
|
[25] |
CERAOLO C, GIORGI F M. Genomic variance of the 2019-nCoV coronavirus[J]. J Med Virol, 2020, 92(5):522-528. doi: 10.1002/jmv.25700.
|
[26] |
ALKHANSA A, LAKKIS G, EL ZEIN L. Mutational analysis of SARS-CoV-2 ORF8 during six months of COVID-19 pandemic[J]. Gene Rep, 2021, 23:101024. doi: 10.1016/j.genrep.2021.101024.
|
[27] |
LAHA S, CHAKRABORTY J, DAS S, et al. Characterizations of SARS-CoV-2 mutational profile,spike protein stability and viral transmission[J]. Infect Genet Evol, 2020, 85:104445. doi: 10.1016/j.meegid.2020.104445.
|
[28] |
DE SOUSA E, LIGEIRO D, LERIAS J R, et al. Mortality in COVID-19 disease patients:Correlating the association of major histocompatibility complex (MHC) with severe acute respiratory syndrome 2 (SARS-CoV-2) variants[J]. Int J Infect Dis, 2020, 98:454-459. doi: 10.1016/j.ijid.2020.07.016.
|
[29] |
WANG R, CHEN J, GAO K, et al. Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants[J]. Commun Biol, 2021, 4(1):228. doi: 10.1038/s42003-021-01754-6.
|
[30] |
HASSAN S S, ALJABALI A A A, PANDA P K, et al. A unique view of SARS-CoV-2 through the lens of ORF8 protein[J]. Comput Biol Med, 2021, 133:104380. doi: 10.1016/j.compbiomed. 2021.104380.
|
[31] |
AMANAT F, STADLBAUER D, STROHMEIER S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans[J]. Nat Med, 2020, 26(7):1033-1036. doi: 10.1038/s41591-020-0913-5.
|
[32] |
GORDON D E, JANG G M, BOUHADDOU M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing[J]. Nature, 2020, 583(7816):459-468. doi: 10.1038/s41586-020-2286-9.
|
[33] |
ERUKAINURE O L, ATOLANI O, MUHAMMAD A, et al. Translational suppression of SARS-COV-2 ORF8 protein mRNA as a Viable therapeutic target against COVID-19: Computational studies on potential roles of isolated compounds from Clerodendrum volubile leaves[J]. Comput Biol Med, 2021, 139:104964. doi: 10.1016/j.compbiomed.2021.104964.
|