| [1] |
MOJIDRA R, HOLE A, IWASAKI K, et al. DNA fingerprint analysis of raman spectra captures global genomic alterations in imatinib-resistant chronic myeloid leukemia: a potential single assay for screening imatinib resistance[J]. Cells, 2021, 10(10):2506. doi:10.3390/cells10102506.
|
| [2] |
BADRALEXI I, BORDEI A, HALANAY A, et al. Dynamics of chronic myeloid leukemia under imatinib treatment:a study of resistance development[J]. Mathematics, 2025, 12(24):3937. doi:10.3390/math12243937.
|
| [3] |
HE Y, DING J, LIU L, et al. Investigation of TSRP reverses imatinib resistance through the PI3K / Akt pathway in chronic myeloid leukemia[J]. Ann Hematol, 2024, 103(12):5285-5296. doi:10.1007/s00277-024-06099-8.
|
| [4] |
MOJIDRA R, GARDI N, BAGAL B, et al. Genomic analysis identifies an incipient signature to forecast imatinib resistance before start of treatment in patients with chronic myeloid leukemia[J]. Adv Biomark Sci Technol, 2025, 7:59-64. doi:10.1016/j.abst.
|
| [5] |
ZHANG R, HAO J, YU H, et al. circ_SIRT1 upregulates ATG12 to facilitate Imatinib resistance in CML through interacting with EIF4A3[J]. Gene, 2024,893:147917. doi:10.1016/j.gene.2023.147917.
|
| [6] |
LI C, WEN L, DONG J, et al. Alterations in cellular metabolisms after TKI therapy for Philadelphia chromosome-positive leukemia in children: A review[J]. Front Oncol, 2022,12:1072806. doi:10.3389/fonc.2022.1072806.
|
| [7] |
KO B W, HAN J, HEO J Y, et al. Metabolic characterization of imatinib-resistant BCR-ABL T315I chronic myeloid leukemia cells indicates down-regulation of glycolytic pathway and low ROS production[J]. Leuk Lymphoma, 2016, 57(9):2180-2188. doi:10.3109/10428194.2016.1142086.
|
| [8] |
BHINGARKAR A, VANGAPANDU H V, RATHOD S, et al. Amino acid metabolic vulnerabilities in acute and chronic myeloid leukemias[J]. Front Oncol, 2021,11:694526. doi:10.3389/fonc.2021.694526.
|
| [9] |
吴珺, 陆爱东, 张乐萍, 等. 儿童核心结合因子相关性急性髓系白血病疗效及预后因素分析[J]. 中华血液学杂志, 2019, 40(1):52-57.
|
|
WU J, LU A D, ZHANG L P, et al. Study of clinical outcome and prognosis in pediatric core binding factor-acute myeloid leukemia[J]. Chin J Hematol, 2019, 40(1):52-57. doi:10.3760/cma.j.issn.0253-2727.2019.01.010.
|
| [10] |
LIANG X, ZHOU J, LI C, et al. The roles and mechanisms of TGFB1 in acute myeloid leukemia chemoresistance[J]. Cell Signal, 2024,116:111027. doi:10.1016/j.cellsig.2023.111027.
|
| [11] |
ZHONG L, XIAO J L, LUO J, et al. Adsl,as a hub for amino acid metabolism and glucose metabolism,promotes the development of multiple myeloma[J]. Blood, 2024, 144(Supplement1):6824. doi:10.1182/blood-2024-204474.
|
| [12] |
POTETI M, MENEGAZZI G, PEPPICELLI S, et al. Glutamine availability controls bcr/abl protein expression and functional phenotype of chronic myeloid leukemia cells endowed with stem/progenitor cell potential[J]. Cancers (Basel), 2021, 13(17):4372. doi:10.3390/cancers13174372.
|
| [13] |
IJARE O, BASKIN D, PICHUMANI K. CBMT-01. alanine fuels energy metabolism of glioblastoma cells[J]. Neuro-Oncology, 2019, 21(Supplement6):32-33. doi:10.1093/neuonc/noz175.123.
|
| [14] |
HELENIUS I T, MADALA H R, YEH J J. An asp to strike out cancer? therapeutic possibilities arising from aspartate's emerging roles in cell proliferation and survival[J]. Biomolecules, 2021, 11(11):1666. doi:10.3390/biom11111666.
|
| [15] |
XUE W, WU K, GUO X, et al. The pan-cancer landscape of glutamate and glutamine metabolism: a comprehensive bioinformatic analysis across 32 solid cancer types[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(2): 166982. doi:10.1016/j.bbadis.2023.166982.
|
| [16] |
LAI Y C, LIN G, HO K C, et al. Aspartate and acetate fuel gastrointestinal stromal tumors beyond the warburg effect[J]. Ann Surg Open, 2022, 3(4):e224. doi:10.1097/AS9.0000000000000224.
|
| [17] |
MUTHU M, KUMAR R, SYED KHAJA A S, et al. GLUL ablation can confer drug resistance to cancer cells via a malate-aspartate shuttle-mediated mechanism[J]. Cancers (Basel), 2019, 11(12):1945. doi:10.3390/cancers11121945.
|
| [18] |
WU J, DENG P, ZOU L, et al. A phase Ⅱclinical study on apatinib plus vinorelbine in refractory her2-negative breast cancer and its metabolic implications of drug resistance[J]. Curr Cancer Drug Targets, 2025, 25(10):e15680096303785.doi:10.2174/0115680096303785240822155217.
|
| [19] |
PENG C J, FAN Z, LUO J S, et al. The potential transcriptomic and metabolomic mechanisms of ATO and ATRA in treatment of FLT3-ITD acute myeloid leukemia[J]. Technol Cancer Res Treat, 2024,23:15330338231223080. doi:10.1177/15330338231223080.
|
| [20] |
SINGH P, YADAV R, VERMA M, et al. Antileukemic activity of hsa-miR-203a-5p by limiting glutathione metabolism in imatinib-resistant K562 cells[J]. Curr Issues Mol Biol, 2022, 44(12):6428-6438. doi:10.3390/cimb44120438.
|
| [21] |
NAKA K. New routes to eradicating chronic myelogenous leukemia stem cells by targeting metabolism[J]. Int J Hematol, 2021, 113(5):648-655. doi:10.1007/s12185-021-03112-y.
|