| [1] |
CHONG B, JAYABASKARAN J, JAUHARI S M, et al. Global burden of cardiovascular diseases:projections from 2025 to 2050[J]. Eur J Prev Cardiol, 2025, 32(11):1001-1015. doi:10.1093/eurjpc/zwae281.
|
| [2] |
CIPRIANO G L, SCHEPICI G, MAZZON E, et al. Multiple sclerosis:Roles of miRNA,lcnRNA,and circRNA and their implications in cellular pathways[J]. Int J Mol Sci, 2024, 25(4):2255. doi:10.3390/ijms25042255.
|
| [3] |
吴宾, 杨自更, 金玲, 等. miRNA-381-3p/MuRF1轴对低氧性肺动脉高压小鼠心肺损伤的影响[J]. 天津医药, 2025, 53(6):571-577.
|
|
WU B, YANG Z G, JIN L, et al. Effect of miRNA-381-3p/MuRF1 axis on cardiopulmonary injury in mice with hypoxic pulmonary hypertension[J]. Tianjin Med J, 2025, 53(6):571-577. doi:10.11958/20251127.
|
| [4] |
PONTEMEZZO E, FOGLIO E, VERNUCCI E, et al. miR-200c-3p regulates epitelial-to-mesenchymal transition in epicardial mesothelial cells by targeting epicardial follistatin-related protein 1[J]. Int J Mol Sci, 2021, 22(9):4971. doi:10.3390/ijms22094971.
|
| [5] |
DUEÑAS A, EXPÓSITO A, MUÑOZ M, et al. MiR-195 enhances cardiomyogenic differentiation of the proepicardium/septum transversum by Smurf1 and Foxp1 modulation[J]. Sci Rep, 2020, 10(1):9334. doi:10.1038/s41598-020-66325-x.
|
| [6] |
KHIDR E G, ABULSOUD A I, DOGHISH A A, et al. The potential role of miRNAs in the pathogenesis of cardiovascular diseases - A focus on signaling pathways interplay[J]. Pathol Res Pract, 2023, 248:154624. doi:10.1016/j.prp.2023.154624.
|
| [7] |
XIN Y, TANG L, CHEN J, et al. Inhibition of miR-101-3p protects against sepsis-induced myocardial injury by inhibiting MAPK and NF-κB pathway activation via the upregulation of DUSP1[J]. Int J Mol Med, 2021, 47(3):20. doi:10.3892/ijmm.2021.4853.
|
| [8] |
GRIFFITHS-JONES S, GROCOCK R J, VAN DONGEN S, et al. miRBase:microRNA sequences,targets and gene nomenclature[J]. Nucleic Acids Res, 2006, 34(Database issue):D140-144. doi:10.1093/nar/gkj112.
|
| [9] |
LIU N, YANG C, GAO A, et al. MiR-101: An important regulator of gene expression and tumor ecosystem[J]. Cancers(Basel), 2022, 14(23):5861. doi:10.3390/cancers14235861.
|
| [10] |
GUO X, CHEN M, CAO L, et al. Cancer-associated fibroblasts promote migration and invasion of non-small cell lung cancer cells via miR-101-3p mediated VEGFA secretion and AKT/eNOS pathway[J]. Frontiers in cell and developmental biology, 2021, 9:764151. doi:10.3389/fcell.2021.764151.
|
| [11] |
WANG J, ZHANG W, ZHANG R, et al. MiR-101-3p promotes tumor cell proliferation and migration via the wnt signal pathway in MNNG-induced esophageal squamous cell carcinoma[J]. Toxics, 2024, 12(11):824. doi:10.3390/toxics12110824.
|
| [12] |
LIU M, GAO H, HE Y, et al. Upregulation of miR-101-3p overcomes ibrutinib resistance by targeting ABCC5 in diffuse large B-cell lymphoma(DLBCL)[J]. Journal of Hard Tissue Biology, 2023, 32(1):11-20. doi:10.2485/jhtb.32.11.
|
| [13] |
WANG H, WANG L, ZHANG G, et al. MALAT1/miR-101-3p/MCL1 axis mediates cisplatin resistance in lung cancer[J]. Oncotarget, 2018, 9(7):7501-7512. doi:10.18632/oncotarget.23483.
|
| [14] |
BAKHSHI A, KHANI M, ALIPOUR PARSA S, et al. Investigating the expression level of miR-17-3p,miR-101-3p,miR-335-3p,and miR-296-3p in the peripheral blood of patients with acute myocardial infarction[J]. Mol Cell Biochem, 2024, 479(4):859-868. doi:10.1007/s11010-023-04766-4.
|
| [15] |
WANG J, YANG X, LI R, et al. LncRNA SNHG6 inhibits apoptosis by regulating EZH2 expression via the sponging of miR-101-3p in esophageal squamous-cell carcinoma[J]. Onco Targets Ther, 2020, 13:11411-11420. doi:10.2147/OTT.S275135.
|
| [16] |
ABDI J, RASTGOO N, CHEN Y, et al. Ectopic expression of BIRC5-targeting miR-101-3p overcomes bone marrow stroma-mediated drug resistance in multiple myeloma cells[J]. BMC Cancer, 2019, 19(1):975. doi:10.1186/s12885-019-6151-x.
|
| [17] |
ZHU W, NI Q, WANG Z, et al. MiR-101-3p targets the PI3K-AKT signaling pathway via Birc5 to inhibit invasion,proliferation,and epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Clin Exp Med, 2025, 25(1):88. doi:10.1007/s10238-025-01622-1.
|
| [18] |
SUN H, ZHU R, GUO X, et al. Exosome miR-101-3p derived from bone marrow mesenchymal stem cells promotes radiotherapy sensitivity in non-small cell lung cancer by regulating DNA damage repair and autophagy levels through EZH2[J]. Pathol Res Pract, 2024, 256:155271. doi:10.1016/j.prp.2024.155271.
|
| [19] |
PARK J, CHO M, CHO J, et al. MicroRNA-101-3p suppresses cancer cell growth by inhibiting the USP47-induced deubiquitination of RPL11[J]. Cancers(Basel), 2022, 14(4):964. doi:10.3390/cancers14040964.
|
| [20] |
TAO L, XU C, SHEN W, et al. HIPK3 inhibition by exosomal hsa-miR-101-3p is related to metabolic reprogramming in colorectal cancer[J]. Front Oncol, 2021, 11:758336. doi:10.3389/fonc.2021.758336.
|
| [21] |
ZIEMANN M, LIM S C, KANG Y, et al. MicroRNA-101-3p modulates mitochondrial metabolism via the regulation of complex II assembly[J]. J Mol Biol, 2022, 434(2):167361. doi:10.1016/j.jmb.2021.167361.
|
| [22] |
HUA G, ZENG Z L, SHI Y T, et al. LncRNA XIST contributes to cisplatin resistance of lung cancer cells by promoting cellular glycolysis through sponging miR-101-3p[J]. Pharmacology, 2021, 106(9/10):498-508. doi:10.1159/000512621.
|
| [23] |
XU C F, CAO Q, ZHANG B F. Catalpol improves insulin resistance and lipid metabolism disorder in diabetic mice by inhibiting microRNA-101-3p to up-regulate FOS-related antigen 2[J]. J Physiol Pharmacol, 2024, 75(3). doi:10.26402/jpp.2024.3.05. [Epub 2024 Jul 18]
|
| [24] |
MAHMOUDIAN ESFAHANI M, MOSTASHFI M, VAHEB HOSSEINABADI S, et al. Unveiling the regulatory of miR-101-3p on ZNF746 in a Parkinson's disease cell model:Implications for therapeutic targeting[J]. Neurosci Res, 2024, 203:18-27. doi:10.1016/j.neures.2023.12.001.
|
| [25] |
ZHANG T, ZHAO S, GU C. Role of PGC-1α in the proliferation and metastasis of malignant tumors[J]. J Mol Histol, 2025, 56(2):77. doi:10.1007/s10735-025-10360-3.
|
| [26] |
ZHANG Y, WANG Y, ZHAO F. Application of the trend of miRNA expression levels in APP/PS1 mice plasma for the early diagnosis of Alzheimer's disease[J]. Mol Neurobiol, 2025, 62(6):7792-7804. doi:10.1007/s12035-025-04743-6.
|
| [27] |
SONG L, FENG S, YU H, et al. Dexmedetomidine protects against kidney fibrosis in diabetic mice by targeting miR-101-3p-mediated EndMT[J]. Dose Response, 2022, 20(1):15593258221083486. doi:10.1177/15593258221083486.
|
| [28] |
ZHANG J, XU X, WANG M. Clinical significance of serum miR-101-3p expression in patients with neonatal sepsis[J]. Per Med, 2021, 18(6):541-550. doi:10.2217/pme-2020-0182.
|
| [29] |
ZHAO X, LI S, WANG Z, et al. miR-101-3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF-κB pathway[J]. Mol Med Rep, 2021, 23(5):359. doi:10.3892/mmr.2021.11998.
|
| [30] |
CHEN Q, LI X, KONG L, et al. miR-101-3p induces vascular endothelial cell dysfunction by targeting tet methylcytosine dioxygenase 2[J]. Acta Biochim Biophys Sin(Shanghai), 2020, 52(2):180-191. doi:10.1093/abbs/gmz154.
|
| [31] |
谢田田, 赵春虎, 袁文生, 等. 老年急性ST段抬高型心肌梗死患者血清lnc-MALAT1、miR-101-3p水平与心功能分级及短期预后的相关性[J]. 中国老年学杂志, 2024, 44(16):3841-3844.
|
|
XIE T T, ZHAO C H, YUAN W S, et al. Correlation between serum lnc-MALAT1 and miR-101-3p levels and cardiac function classification and short-term prognosis in elderly patients with acute ST-segment elevation myocardial infarction[J]. Chinese Journal of Gerontology, 2024, 44(16):3841-3844. doi:10.3969/j.issn.1005-9202.2024.16.001.
|
| [32] |
SANTOS-FARIA J, GAVINA C, RODRIGUES P, et al. MicroRNAs and ventricular remodeling in aortic stenosis[J]. Rev Port Cardiol(Engl Ed), 2020, 39(7):377-387. doi:10.1016/j.repc.2019.09.014.
|
| [33] |
CHEN J, LIN Y, SUN Z. Inhibition of miR-101-3p prevents human aortic valve interstitial cell calcification through regulation of CDH11/SOX9 expression[J]. Mol Med, 2023, 29(1):24. doi:10.1186/s10020-023-00619-4.
|
| [34] |
WAN F, MA X, WANG J, et al. Evaluation of left ventricular dysfunction by three-dimensional speckle-tracking echocardiography and bioinformatics analysis of circulating exosomal miRNA in obese patients[J]. BMC Cardiovasc Disord, 2023, 23(1):450. doi:10.1186/s12872-023-03502-6.
|
| [35] |
PAN Z, SUN X, SHAN H, et al. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway[J]. Circulation, 2012, 126(7):840-850. doi:10.1161/CIRCULATIONAHA.112.094524.
|
| [36] |
CHENG S, ZHOU F, XU Y, et al. Geniposide regulates the miR-101/MKP-1/p38 pathway and alleviates atherosclerosis inflammatory injury in ApoE-/- mice[J]. Immunobiology, 2019, 224(2):296-306. doi:10.1016/j.imbio.2018.12.005.
|
| [37] |
TAN W H, PENG Z L, YOU T, et al. CTRP15 promotes macrophage cholesterol efflux and attenuates atherosclerosis by increasing the expression of ABCA1[J]. J Physiol Biochem, 2022, 78(3):653-666. doi:10.1007/s13105-022-00885-6.
|
| [38] |
JIANG H, TOSCANO J F, SONG S S, et al. Differential expression of circulating exosomal microRNAs in refractory intracranial atherosclerosis associated with antiangiogenesis[J]. Sci Rep, 2019, 9(1):19429. doi:10.1038/s41598-019-54542-y.
|
| [39] |
LI Y, DU L, MENG L, et al. High expression of CASP1 induces atherosclerosis[J]. Medicine(Baltimore), 2024, 103(16):e37616. doi:10.1097/MD.0000000000037616.
|
| [40] |
MAYR B, MÜLLER E E, SCHÄFER C, et al. Exercise-induced changes in miRNA expression in coronary artery disease[J]. Clin Chem Lab Med, 2021, 59(10):1719-1727. doi:10.1515/cclm-2021-0164.
|
| [41] |
SANTOS A S, CUNHA NETO E, FUKUI R T, et al. Increased expression of circulating microRNA 101-3p in type 1 diabetes patients:New insights into miRNA-regulated pathophysiological pathways for type 1 diabetes[J]. Front Immunol, 2019, 10:1637. doi:10.3389/fimmu.2019.01637.
|
| [42] |
蒋凯, 陈永顺. miR-101-3p通过MAPK信号通路保护心肌缺血再灌注损伤的机制研究[J]. 现代医学, 2022, 50(6):665-671.
|
|
JIANG K, CHEN Y S. Mechanism of miR-101-3p protecting myocardial ischemia-reperfusion injury through MAPK signaling pathway[J]. Modern Medical Journal, 2022, 50(6):665-671. doi:10.3969/j.issn.1671-7562.2022.06.001.
|