[1] |
PENG F, GONG W, LI S, et al. circRNA_010383 acts as a sponge for mir-135a,and its downregulated expression contributes to renal fibrosis in diabetic nephropathy[J]. Diabetes, 2021, 70(2):603-615. doi: 10.2337/db20-0203.
|
[2] |
LU B, GONG W, YANG Z, et al. An evaluation of the diabetic kidney disease definition in Chinese patients diagnosed with type 2 diabetes mellitus[J]. J Int Med Res, 2009, 37(5):14931500. doi: 10.1177/147323000903700526.
|
[3] |
许嵘, 钟一红, 陈波, 等. 上海市郊区2型糖尿病患者肾脏疾病及其危险因素研究[J]. 中华内科杂志, 2012, 5l(1):18-23.
|
|
XU R, ZHONG Y H, CHEN B, et al. The prevalence and risk factors of kidney disease in type 2 diabetic patients in rural Shanghai[J]. Chin J Intern Med, 2012, 5l(1):18-23. doi: 10.3760/cma.j.issn.0578-1426.2012.01.005.
|
[4] |
ZHANG L, LONG J, JIANG W, et al. Trends in chronic kidney disease in China[J]. N Engl J Med, 2016, 375(9):905-906. doi: 10.1056/NEJMc1602469.
|
[5] |
张俊清, 苏白海, 张捷, 等. 糖尿病肾病早期预测与诊断专家共识[J]. 中华内科杂志, 2021, 60(6):522-532.
|
|
ZHANG J Q, SU B H, ZHANG J, et al. Expert consensus on early prediction and diagnosis of diabetic nephropathy[J]. Chin J Intern Med, 2021, 60(6):522-532. doi: 10.3760/cma.j.cn112138-20200603-00550.
|
[6] |
YANG M, WANG X, HAN Y, et al. Targeting the NLRP3 Inflammasome in Diabetic Nephropathy[J]. Curr Med Chem, 2021, 28(42):8810-8824. doi: 10.2174/0929867328666210705153109.
|
[7] |
JIANG Z H, TANG Y Z, SONG H N, et al. miRNA-342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6[J]. Int J Mol Med, 2020, 45(1):45-52. doi: 10.3892/ijmm.2019.4388.
|
[8] |
LV X, LI J, HU Y, et al. Overexpression of mir-27b-3p targeting wnt3a regulates the signaling pathway of wnt/β-catenin and attenuates atrial fibrosis in rats with atrial fibrillation[J]. Oxid Med Cell Longev, 2019, 17(4):5703764. doi: 10.1155/2019/5703764.
|
[9] |
ASSMANN T S, RECAMONDE-MENDOZA M, DE SOUZA B M, et al. MicroRNAs and diabetic kidney disease:Systematic review and bioinformatic analysis[J]. Mol Cell Endocrinol, 2018, 5(12):90-102. doi: 10.1016/j.mce.2018.06.005.
|
[10] |
郭凯锋, 寇静鑫, 陆俊茜, 等. 2型糖尿病肾病患者尿中smad3蛋白的水平变化和意义[J]. 中华医学杂志, 2013, 93(14):1067-1071.
|
|
GUO K F, KOU J X, LU J Q, et al. Change and significance of urinary smad3 in type 2 diabetic nephropathy[J]. Natl Med J China, 2013, 93(14):1067-1071. doi: 10.3760/cma.j.issn.0376-2491.2013.14.008.
|
[11] |
刘旭辉, 王韧, 张献玲, 等. 血清miR-146a作为脓毒症诊断标记物的研究[J]. 实用医学杂志, 2017, 33(7):1103-1105.
|
|
LIU X H, WANG R, ZHANG X L, et al. Serum miR-146a as potential biomarker for sepsis[J]. Journal of Practical Medicine, 2017, 33(7):1103-1105. doi: 10.3969/j.issn.1006-5725.2017.07.022.
|
[12] |
MA Z, LI L, LIVINGSTON M J, et al. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease[J]. J Clin Invest, 2020, 130(9):5011-5026. doi: 10.1172/JCI135536.
|
[13] |
ZENG X, HUANG C, SENAVIRATHNA L, et al. miR-27b inhibits fibroblast activation via targeting TGFβ signaling pathway[J]. BMC Cell Biol, 2017, 18(1):9. doi: 10.1186/s12860-016-0123-7.
|
[14] |
FU Q, LU Z, FU X, et al. MicroRNA 27b promotes cardiac fibrosis by targeting the FBW7/Snail pathway[J]. Aging(Albany NY), 2019, 11(24):11865-11879. doi: 10.18632/aging.102465.
|
[15] |
LI D, ZHANG J, LIU Z, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-27b attenuates subretinal fibrosis via suppressing epithelial-mesenchymal transition by targeting HOXC6[J]. Stem Cell Res Ther, 2021, 12(1):24. doi: 10.1186/s13287-020-02064-0.
|
[16] |
BAI L, LIN Y, XIE J, et al. MiR-27b-3p inhibits the progression of renal fibrosis via suppressing STAT1[J]. Hum Cell, 2021, 34(2):383-393. doi: 10.1007/s13577-020-00474-z.
|
[17] |
ZHANG M Y, CALIN G A, YUEN K S, et al. Epigenetic silencing of miR-342-3p in B cell lymphoma and its impact on autophagy[J]. Clin Epigenetics, 2020, 12(1):150. doi: 10.1186/s13148-020-00926-1.
|
[18] |
YAN X C, CAO J, LIANG L, et al. miR-342-5p is a notch downstream molecule and regulates multiple angiogenic pathways including notch,vascular endothelial growth factor and transforming growth factor β signaling[J]. J Am Heart Assoc, 2016, 5(2):e003042. doi: 10.1161/JAHA.115.003042.
|
[19] |
QU Y, LIU D, JIA H, et al. Circular RNA rno_circ_0004002 regulates cell proliferation,apoptosis,and epithelial-mesenchymal transition through targeting miR-342-5p and Wnt3a in anorectal malformations[J]. J Cell Biochem, 2019, 120(9):15483-15493. doi: 10.1002/jcb.28814.
|
[20] |
ISAKA Y. Targeting TGF-β signaling in kidney fibrosis[J]. Int J Mol Sci, 2018, 19(9):2532. doi: 10.3390/ijms19092532.
|
[21] |
ZHOU J, CHENG H, WANG Z, et al. Bortezomib attenuates renal interstitial fibrosis in kidney transplantation via regulating the EMT induced by TNF-α-Smurf1-Akt-mTOR-P70S6K pathway[J]. J Cell Mol Med, 2019, 23(8):5390-5402. doi: 10.1111/jcmm.14420.
|
[22] |
TANG S, WANG Y, XIE G, et al. Regulation of Ptch1 by miR-342-5p and FoxO3 induced autophagy involved in renal fibrosis[J]. Front Bioeng Biotechnol, 2020, 8:583318. doi: 10.3389/fbioe.2020.583318.
|
[23] |
JIANG Z H, TANG Y Z, SONG H N, et al. miRNA‑342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6[J]. Int J Mol Med, 2020, 45(1):45-52. doi: 10.3892/ijmm.2019.4388.
|