[1] |
INGELSSON E, MCCARTHY M I. Human genetics of obesity and type 2 diabetes mellitus: Past,present,and future[J]. Circ Genom Precis Med, 2018, 11(6):e002090. doi: 10.1161/CIRCGEN.118.002090.
|
[2] |
SUGAHARA M, PAK W, TANAKA T, et al. Update on diagnosis,pathophysiology,and management of diabetic kidney disease[J]. Nephrology (Carlton), 2021, 26(6):491-500. doi: 10.1111/nep.13860.
|
[3] |
CHUNG A C. MicroRNAs in diabetic kidney disease[J]. Adv Exp Med Biol, 2015, 888:253-269. doi: 10.1007/978-3-319-22671-2_13.
|
[4] |
YU F N, HU M L, WANG X F, et al. Effects of microRNA-370 on mesangial cell proliferation and extracellular matrix accumulation by binding to canopy 1 in a rat model of diabetic nephropathy[J]. J Cell Physiol, 2019, 234(5):6898-6907. doi: 10.1002/jcp.27448.
|
[5] |
PUTTA S, LANTING L, SUN G, et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy[J]. J Am Soc Nephrol, 2012, 23(3):458-469. doi: 10.1681/ASN.2011050485.
|
[6] |
YANG X Y, LIU S H, ZHANG R, et al. Microribonucleic acid-192 as a specific biomarker for the early diagnosis of diabetic kidney disease[J]. J Diabetes Investig, 2017, 9(3):602-609. doi: 10.1111/jdi.12753.
|
[7] |
HU C, SUN L, XIAO L, et al. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy[J]. Curr Med Chem, 2015, 22(24):2858-2870. doi: 10.2174/0929867322666150625095407.
|
[8] |
RICCIARDI C A, GNUDI L. Kidney disease in diabetes:From mechanisms to clinical presentation and treatment strategies[J]. Metabolism, 2021, 124:154890. doi: 10.1016/j.metabol.2021.154890.
|
[9] |
BüLOW R D, BOOR P. Extracellular matrix in kidney fibrosis:More than just a scaffold[J]. J Histochem Cytochem, 2019, 67(9):643-661. doi: 10.1369/0022155419849388.
|
[10] |
RAYEGO-MATEOS S, CAMPILLO S, RODRIGUES-DIEZ R R, et al. Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis[J]. Clin Sci (Lond), 2021, 135(16):1999-2029. doi: 10.1042/CS20201016.
|
[11] |
CHANDRASEKARAN K, KAROLINA D S, SEPRAMANIAM S, et al. Role of microRNAs in kidney homeostasis and disease[J]. Kidney Int, 2012, 81(7):617-627. doi: 10.1038/ki.2011.448.
|
[12] |
李栋, 林珊. microRNAs在糖尿病肾病发病机制中的作用[J]. 天津医药, 2015, 43(6):698-702.
|
|
LI D, LIN S. The role of microRNAs in the pathogenesis of diabetic nephropathy[J]. Tianjin Med J, 2015, 43(6):698-702. doi: 10.11958/j.issn.0253-9896.2015.06.032.
|
[13] |
REN H, WANG Q. Non-coding RNA and diabetic kidney disease[J]. DNA Cell Biol, 2021, 40(4):553-567. doi: 10.1089/dna.2020.5973.
|
[14] |
KRUPA A, JENKINS R, LUO D D, et al. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy[J]. J Am Soc Nephrol, 2010, 21(3):438-447. doi: 10.1681/ASN.2009050530.
|
[15] |
WANG B, KOMERS R, CAREW R, et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis[J]. J Am Soc Nephrol, 2012, 23(2):252-265. doi: 10.1681/ASN.2011010055.
|
[16] |
KATO M, ZHANG J, WANG M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors[J]. Proc Natl Acad Sci U S A, 2007, 104(9):3432-3437. doi: 10.1073/pnas.0611192104.
|
[17] |
WILLIAMS T M, LISANTI M P. The caveolin genes: From cell biology to medicine[J]. Ann Med, 2004, 36(8):584-595. doi: 10.1080/07853890410018899.
|
[18] |
FUJITA Y, MARUYAMA S, KOGO H, et al. Caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF[J]. Kidney Int, 2004, 66(5):1794-1804. doi: 10.1111/j.1523-1755.2004.00954.x.
|
[19] |
CHEN P, FENG Y, ZHANG H, et al. MicroRNA‑192 inhibits cell proliferation and induces apoptosis in human breast cancer by targeting caveolin 1[J]. Oncol Rep, 2019, 42(5):1667-1676. doi: 10.3892/or.2019.7298.
|
[20] |
PALMER B F. Proteinuria as a therapeutic target in patients with chronic kidney disease[J]. Am J Nephrol, 2007, 27(3):287-293. doi: 10.1159/000101958.
|
[21] |
PERKINS B A, FICOCIELLO L H, OSTRANDER B E, et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes[J]. J Am Soc Nephrol, 2007, 18(4):1353-1361. doi: 10.1681/ASN.2006080872.
|
[22] |
TANG S, WANG X, DENG T, et al. Identification of C3 as a therapeutic target for diabetic nephropathy by bioinformatics analysis[J]. Sci Rep, 2020, 10(1):13468. doi: 10.1038/s41598-020-70540-x.
|
[23] |
ORLICHENKO L, WELLER S G, CAO H, et al. Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation[J]. Mol Biol Cell, 2009, 20(19):4140-4152. doi: 10.1091/mbc.e08-10-1043.
|