[1] |
WANG Z, CHEN Z, ZHANG L, et al. Status of hypertension in China:Results from the China Hypertension Survey, 2012-2015[J]. Circulation, 2018, 137(22):2344-2356. doi:10.1161/CIRCULATIONAHA.117.032380.
|
[2] |
YANG G H, ZHOU X, JI W J, et al. VEGF-C-mediated cardiac lymphangiogenesis in high salt intake accelerated progression of left ventricular remodeling in spontaneously hypertensive rats[J]. Clin Exp Hypertens, 2017, 39(8):740-747. doi:10.1080/10641963.2017.1324478.
|
[3] |
YANG G H, ZHOU X, JI W J, et al. Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats[J]. Am J Physiol Heart Circ Physiol, 2014, 306(4):H598-609. doi:10.1152/ajpheart.00585.2013.
|
[4] |
SU C, JIA S, MA Z, et al. HMGB1 Promotes lymphangiogenesis through the activation of RAGE on M2 macrophages in laryngeal squamous cell carcinoma[J]. Dis Markers, 2022, 2022:4487435. doi:10.1155/2022/4487435.
|
[5] |
WANG C, YUE Y, HUANG S, et al. M2b macrophages stimulate lymphangiogenesis to reduce myocardial fibrosis after myocardial ischaemia/reperfusion injury[J]. Pharm Biol, 2022, 60(1):384-393. doi:10.1080/13880209.2022.2033798.
|
[6] |
BOWLIN A, ROYS H, WANJALA H, et al. Hypoxia-inducible factor signaling in macrophages promotes lymphangiogenesis in leishmania major infection[J]. Infect Immun, 2021, 89(8):e0012421. doi:10.1128/IAI.00124-21.
|
[7] |
YU F F, YANG G H, CHEN S B, et al. Pseudolaric acid b attenuates high salt intake-induced hypertensive left ventricular remodeling by modulating monocyte/macrophage phenotypes[J]. Med Sci Monit, 2021, 27:e932404. doi:10.12659/MSM.932404.
|
[8] |
BENJAMIN E J, MUNTNER P, ALONSO A, et al. Heart disease and stroke Statistics-2019 Update: A report from the American Heart Association[J]. Circulation, 2019, 139(10):e56-e528. doi:10.1161/CIR.0000000000000659.
|
[9] |
CAI W, LANG M, JIANG X, et al. Correlation among high salt intake, blood pressure variability,and target organ damage in patients with essential hypertension:Study protocol clinical trial(SPIRIT compliant)[J]. Medicine (Baltimore), 2020, 99(14):e19548. doi:10.1097/MD.0000000000019548.
|
[10] |
FURUSHO T, SOHARA E, MANDAI S, et al. Renal TNFα activates the WNK phosphorylation cascade and contributes to salt-sensitive hypertension in chronic kidney disease[J]. Kidney Int, 2020, 97(4):713-727. doi:10.1016/j.kint.2019.11.021.
|
[11] |
MITSIDES N, ALSEHLI F, MC HOUGH D, et al. Salt and water retention is associated with microinflammation and endothelial injury in chronic kidney disease[J]. Nephron, 2019, 143(4):234-242. doi:10.1159/000502011.
|
[12] |
OHASHI N, ISHIGAKI S, ISOBE S, et al. Salt loading aggravates the relationship between melatonin and proteinuria in patients with chronic kidney disease[J]. Intern Med, 2019, 58(11):1557-1564. doi:10.2169/internalmedicine.1929-18.
|
[13] |
ZOSHIMA T, OKADA H, KAWANO M. Systemic sarcoidosis with subcutaneous,muscular,cardiac,and lymph node involvement[J]. Clin Rheumatol, 2022, 41(9):2913-2914. doi:10.1007/s10067-022-06222-y.
|
[14] |
OE Y, ISHIBASHI-UEDA H, MATSUYAMA T A, et al. Lymph vessel proliferation on cardiac biopsy may help in the diagnosis of cardiac sarcoidosis[J]. J Am Heart Assoc, 2019, 8(2):e010967. doi:10.1161/JAHA.118.010967.
|
[15] |
BAI J, YIN L, YU W J, et al. Angiotensin II induces cardiac edema and hypertrophic remodeling through lymphatic-dependent mechanisms[J]. Oxid Med Cell Longev, 2022, 2022:5044046. doi:10.1155/2022/5044046.
|
[16] |
NIELSEN N R, RANGARAJAN K V, MAO L, et al. A murine model of increased coronary sinus pressure induces myocardial edema with cardiac lymphatic dilation and fibrosis[J]. Am J Physiol Heart Circ Physiol, 2020, 318(4):H895-H907. doi:10.1152/ajpheart.00436.2019.
|