[1] |
SCHEPERS N J, BAKKER O J, BESSELINK M G, et al. Impact of characteristics of organ failure and infected necrosis on mortality in necrotising pancreatitis[J]. Gut, 2019, 68(6):1044-1051. doi:10.1136/gutjnl-2017-314657.
|
[2] |
BANG J Y, WILCOX C M, ARNOLETTI J P, et al. Superiority of endoscopic interventions over minimally invasive surgery for infected necrotizing pancreatitis:Meta-analysis of randomized trials[J]. Dig Endosc, 2020, 32(3):298-308. doi:10.1111/den.13470.
|
[3] |
XIAO A Y, TAN M L Y, WU L M, et al. Global incidence and mortality of pancreatic diseases:A systematic review,meta-analysis,and meta-regression of population-based cohort studies[J]. Lancet Gastroenterol Hepatol, 2016, 1(1):45-55. doi:10.1016/s2468-1253(16)30004-8.
|
[4] |
LEE P J, PAPACHRISTOU G I. New insights into acute pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8):479-496. doi:10.1038/s41575-019-0158-2.
|
[5] |
FAWZY H A, MOHAMMED A A, FAWZY H M, et al. Reorienting of pramipexole as a promising therapy for acute pancreatitis in a rat model by suppressing TLR4\NF-κB p65\NLRP3 inflammasome signaling[J]. Can J Physiol Pharmacol, 2022, 100(6):542-552. doi:10.1139/cjpp-2021-0664.
|
[6] |
WU D, JI H, DU W, et al. Mitophagy alleviates ischemia/reperfusion-induced microvascular damage through improving mitochondrial quality control[J]. Bioengineered, 2022, 13(2):3596-3607. doi:10.1080/21655979.2022.2027065.
|
[7] |
SINGH R, CHANDRASHEKHARAPPA S, BODDULURI S R, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway[J]. Nat Commun, 2019, 10(1):89. doi: 10.1038/s41467-018-07859-7.
|
[8] |
AHO H J, NEVALAINEN T J, AHO A J. Experimental pancreatitis in the rat. Development of pancreatic necrosis,ischemia and edema after intraductal sodium taurocholate injection[J]. Eur Surg Res, 1983, 15(1):28-36. doi:10.1159/000128330.
|
[9] |
SCHMIDT J, RATTNER D W, LEWANDROWSKI K, et al. A better model of acute pancreatitis for evaluating therapy[J]. Ann Surg, 1992, 215(1):44-56. doi:10.1097/00000658-199201000-00007.
|
[10] |
LIU S, D'AMICO D, SHANKLAND E, et al. Effect of urolithin a supplementation on muscle endurance and mitochondrial health in older adults:A randomized clinical trial[J]. JAMA Netw Open, 2022, 5(1):e2144279. doi:10.1001/jamanetworkopen.2021.44279.
|
[11] |
TAO H, LI W, ZHANG W, et al. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal osteoporosis by,suppresses inflammation and downstream NF-κB activated pyroptosis pathways[J]. Pharmacol Res, 2021, 174:105967. doi:10.1016/j.phrs.2021.105967.
|
[12] |
WANG Y, HUANG H, JIN Y, et al. Role of TFEB in autophagic modulation of ischemia reperfusion injury in mice kidney and protection by urolithin A[J]. Food Chem Toxicol, 2019, 131:110591. doi:10.1016/j.fct.2019.110591.
|
[13] |
LI G, WU X, YANG L, et al. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis[J]. Int J Mol Med, 2016, 37(1):99-107. doi:10.3892/ijmm.2015.2410.
|
[14] |
LIN M, HUANG J, CHEN W C, et al. The immunomodulatory effects and mechanisms of Tim-3 action in the early stage of mice with severe acute pancreatitis[J]. Iran J Immunol, 2020, 17(1):52-63. doi:10.22034/iji.2020.80294.
|
[15] |
TANG G, YU C, XIANG K, et al. Inhibition of ANXA2 regulated by SRF attenuates the development of severe acute pancreatitis by inhibiting the NF-κB signaling pathway[J]. Inflamm Res, 2022, 71(9):1067-1078. doi:10.1007/s00011-022-01609-8.
|
[16] |
FU X, GONG L F, WU Y F, et al. Urolithin A targets the PI3K/Akt/NF-κB pathways and prevents IL-1β-induced inflammatory response in human osteoarthritis:in vitro and in vivo studies[J]. Food Funct, 2019, 10(9):6135-6146. doi:10.1039/c9fo01332f.
|
[17] |
CHEN Z, DONG W H, WU Q, et al. Two-layer regulation of TRAF6 mediated by both TLR4/NF-kB signaling and miR-589-5p increases proinflammatory cytokines in the pathology of severe acute pancreatitis[J]. Am J Transl Res, 2020, 12(6):2379-2395.
|