天津医药 ›› 2024, Vol. 52 ›› Issue (1): 107-112.doi: 10.11958/20231153
• 综述 • 上一篇
收稿日期:
2023-09-26
出版日期:
2024-01-15
发布日期:
2024-01-18
通讯作者:
△E-mail:作者简介:
梁燕(1995),女,博士在读,主要从事急性心肌梗死的基础和临床研究。E-mail:基金资助:
Received:
2023-09-26
Published:
2024-01-15
Online:
2024-01-18
Contact:
△E-mail:梁燕, 高静. 乳酸杆菌在急性心肌梗死防治中的潜在机制及应用进展[J]. 天津医药, 2024, 52(1): 107-112.
LIANG Yan, GAO Jing. Research progress on the potential mechanism and application of lactobacillus in the prevention and treatment of acute myocardial infarction[J]. Tianjin Medical Journal, 2024, 52(1): 107-112.
摘要:
随着临床、基础医学和代谢组学的发展,肠道菌群已成为研究热点并用于部分肠道疾病的诊疗。乳酸杆菌可产生并调控多种肠道代谢产物,参与脂质代谢、血栓形成、炎症及氧化应激,甚至铁死亡等,可能对心血管疾病的发生发展产生影响。就乳酸杆菌调控代谢、参与心肌梗死的病理生理机制及其在急性心肌梗死(AMI)中的临床应用进行综述,以期为AMI的预防和治疗提供新的参考。
中图分类号:
[1] | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6):583-612. |
The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on Cardiovascular Health and Diseases in China 2022:an Updated Summary[J]. Chinese Circulation Journal, 2023, 38(6):583-612. doi:10.3969/j.issn.1000-3614.2023.06.001. | |
[2] | DONG C, YANG Y, WANG Y, et al. Gut microbiota combined with metabolites reveals unique features of acute myocardial infarction patients different from stable coronary artery disease[J]. J Adv Res, 2023, 46:101-112. doi:10.1016/j.jare.2022.06.008. |
[3] | 车正平, 曾今诚, 杨维青. 益生菌降血脂作用及其机制的研究进展[J]. 微生物学免疫学进展, 2022, 50(4):88-95. |
CHE Z P, ZENG J C, YANG W Q. Research progress of hypolipidemic probiotics and its mechanism[J]. Progress in Microbiology and Immunology, 2022, 50(4):88-95. doi:10.13309/j.cnki.pmi.2022.04.016. | |
[4] | BUFFA J A, ROMANO K A, COPELAND M F, et al. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism[J]. Nat Microbiol, 2022, 7(1):73-86. doi:10.1038/s41564-021-01010-x. |
[5] | CAO H, ZHU Y, HU G, et al. Gut microbiome and metabolites,the future direction of diagnosis and treatment of atherosclerosis?[J]. Pharmacol Res, 2023, 187:106586. doi:10.1016/j.phrs.2022.106586. |
[6] | ZHAO X, ZHONG X, LIU X, et al. Therapeutic and improving function of Lactobacilli in the prevention and treatment of cardiovascular-related diseases:a novel perspective from gut microbiota[J]. Front Nutr, 2021, 8:693412. doi:10.3389/fnut.2021.693412. |
[7] | COUTINHO-WOLINO K S, DE F CARDOZO L F M, DE OLIVEIRA LEAL V, et al. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far?[J]. Eur J Nutr, 2021, 60(7):3567-3584. doi:10.1007/s00394-021-02491-6. |
[8] | TAN Y, ZHOU J, YANG S, et al. Addition of plasma myeloperoxidase and trimethylamine N-oxide to the GRACE score improves prediction of near-term major adverse cardiovascular events in patients with ST-segment elevation myocardial infarction[J]. Front Pharmacol, 2021, 12:632075. doi:10.3389/fphar.2021.632075. |
[9] | KONIECZNY R, ZURAWSKA-PLAKSEJ E, KAAZ K, et al. All-cause mortality and trimethylamine N-oxide levels in patients with cardiovascular disease[J]. Cardiology, 2022, 147(4):443-452. doi:10.1159/000525972. |
[10] | ZHU Y, LI Q, JIANG H. Gut microbiota in atherosclerosis:focus on trimethylamine N-oxide[J]. APMIS, 2020, 128(5):353-366. doi:10.1111/apm.13038. |
[11] | CHONG NGUYEN C, DUBOC D, RAINTEAU D, et al. Circulating bile acids concentration is predictive of coronary artery disease in human[J]. Sci Rep, 2021, 11(1):22661. doi:10.1038/s41598-021-02144-y. |
[12] | LIU T T, WANG J, LIANG Y, et al. The level of serum total bile acid is related to atherosclerotic lesions,prognosis and gut Lactobacillus in acute coronary syndrome patients[J]. Ann Med, 2023, 55(1):223-236. doi:10.1080/07853890.2023.2232369. |
[13] | XIA Y L, XU X Y, GUO Y Z, et al. Mesenchymal stromal cells overexpressing farnesoid X receptor exert cardioprotective effects against acute ischemic heart injury by binding endogenous bile acids[J]. Adv Sci(Weinh), 2022, 9(24):2200431. doi:10.1002/advs.202200431. |
[14] | LIU Y, CHEN K, LI F, et al. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice[J]. Hepatology, 2020, 71(6):2050-2066. doi:10.1002/hep.30975. |
[15] | RUBAK Y T, NURAIDA L, ISWANTINI D, et al. Angiotensin-I-converting enzyme inhibitory peptides in goat milk fermented by lactic acid bacteria isolated from fermented food and breast milk[J]. Food Sci Anim Resour, 2022, 42(1):46-60. doi:10.5851/kosfa.2021.e55. |
[16] | XIA Y, YU J, XU W, et al. Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670[J]. J Dairy Sci, 2020, 103(6):4919-4928. doi:10.3168/jds.2019-17594. |
[17] | WU N, ZHAO Y, WANG Y, et al. Effects of ultra-high pressure treatment on angiotensin-converting enzyme(ACE)inhibitory activity,antioxidant activity,and physicochemical properties of milk fermented with Lactobacillus delbrueckii QS306[J]. J Dairy Sci, 2022, 105(3):1837-1847. doi:10.3168/jds.2021-20990. |
[18] | HU T, WU Q, YAO Q, et al. Short-chain fatty acid metabolism and multiple effects on cardiovascular diseases[J]. Ageing Res Rev, 2022, 81:101706. doi:10.1016/j.arr.2022.101706. |
[19] | MARKOWIAK-KOPEĆ P, ŚLIŻEWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients, 2020, 12(4):1107. doi:10.3390/nu12041107. |
[20] | WEN Y, SUN Z, XIE S, et al. Intestinal flora derived metabolites affect the occurrence and development of cardiovascular disease[J]. J Multidiscip Healthc, 2022, 15:2591-2603. doi:10.2147/JMDH.S367591. |
[21] | PAGONAS N, SEIBERT F S, LIEBISCH G, et al. Association of plasma propionate concentration with coronary artery disease in a large cross-sectional study[J]. Front Cardiovasc Med, 2023, 10:1063296. doi:10.3389/fcvm.2023.1063296. |
[22] | TANG T W H, CHEN H C, CHEN C Y, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair[J]. Circulation, 2019, 139(5):647-659. doi:10.1161/circulationaha.118.035235. |
[23] | SU X, GAO Y, YANG R. Gut Microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis[J]. Cells, 2022, 11(15):2296. doi:10.3390/cells11152296. |
[24] | YE X, LI H, ANJUM K, et al. Dual role of indoles derived from intestinal microbiota on human health[J]. Front Immunol, 2022, 13:903526. doi:10.3389/fimmu.2022.903526. |
[25] | XUE H, CHEN X, YU C, et al. Gut microbially produced indole-3-propionic acid inhibits atherosclerosis by promoting reverse cholesterol transport and its deficiency is causally related to atherosclerotic cardiovascular disease[J]. Circ Res, 2022, 131(5):404-420. doi:10.1161/CIRCRESAHA.122.321253. |
[26] | HO M Y, WANG C Y. Role of irisin in myocardial infarction,heart failure,and cardiac hypertrophy[J]. Cells, 2021, 10(8):2103. doi:10.3390/cells10082103. |
[27] | LI W, LI W, LENG Y, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress[J]. DNA Cell Biol, 2020, 39(2):210-225. doi:10.1089/dna.2019.5097. |
[28] | WU Y, LI X, TAN F, et al. Lactobacillus fermentum CQPC07 attenuates obesity,inflammation and dyslipidemia by modulating the antioxidant capacity and lipid metabolism in high-fat diet induced obese mice[J]. J Inflamm (Lond), 2021, 18(1):5. doi:10.1186/s12950-021-00272-w. |
[29] | WANG N, SONG G, YANG Y, et al. Inactivated Lactobacillus promotes protection against myocardial ischemia-reperfusion injury through NF-κB pathway[J]. Biosci Rep, 2017, 37(6):BSR20171025. doi:10.1042/BSR20171025. |
[30] | HSU C N, HOU C Y, CHAN J Y H, et al. Hypertension programmed by perinatal high-fat diet:effect of maternal gut microbiota-targeted therapy[J]. Nutrients, 2019, 11(12):2908. doi:10.3390/nu11122908. |
[31] | SANDBERG A S, ONNING G, ENGSTROM N, et al. Iron supplements containing Lactobacillus plantarum 299v increase ferric iron and up-regulate the ferric reductase DCYTB in human Caco-2/HT29 MTX co-cultures[J]. Nutrients, 2018, 10(12):1949. doi:10.3390/nu10121949. |
[32] | CANYELLES M, BORRAS C, ROTLLAN N, et al. Gut microbiota-derived TMAO:a causal factor promoting atherosclerotic cardiovascular disease?[J]. Int J Mol Sci, 2023, 24(3):1940. doi:10.3390/ijms24031940. |
[33] | YANG D, LYU W, HU Z, et al. Probiotic effects of Lactobacillus fermentum ZJUIDS06 and Lactobacillus plantarum ZY08 on hypercholesteremic golden hamsters[J]. Front Nutr, 2021, 8:705763. doi:10.3389/fnut.2021.705763. |
[34] | RYAN P M, STOLTE E H, LONDON L E E, et al. Lactobacillus mucosae DPC 6426 as a bile-modifying and immunomodulatory microbe[J]. BMC Microbiol, 2019, 19(1):33. doi:10.1186/s12866-019-1403-0. |
[35] | KHONGRUM J, YINGTHONGCHAI P, BOONYAPRANAI K, et al. Safety and effects of Lactobacillus paracasei TISTR 2593 supplementation on improving cholesterol metabolism and atherosclerosis-related parameters in subjects with hypercholesterolemia: a randomized,double-blind,placebo-controlled clinical trial[J]. Nutrients, 2023, 15(3):661. doi:10.3390/nu15030661. |
[36] | ZHANG P, HAN X, ZHANG X, et al. Lactobacillus acidophilus ATCC 4356 alleviates renal ischemia-reperfusion injury through antioxidant stress and anti-inflammatory responses and improves intestinal microbial distribution[J]. Front Nutr, 2021, 8:667695. doi:10.3389/fnut.2021.667695. |
[37] | HU J, DENG F, ZHAO B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling[J]. Microbiome, 2022, 10(1):38. doi:10.1186/s40168-022-01227-w. |
[38] | YAN J, PAN Y, SHAO W, et al. Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling[J]. Microbiome, 2022, 10(1):195. doi:10.1186/s40168-022-01390-0. |
[39] | DENG F, ZHANG L Q, WU H, et al. Propionate alleviates myocardial ischemia-reperfusion injury aggravated by Angiotensin II dependent on caveolin-1/ACE2 axis through GPR41[J]. Int J Biol Sci, 2022, 18(2):858-872. doi:10.7150/ijbs.67724. |
[40] | KOPPINGER M P, LOPEZ-PIER M A, SKARIA R, et al. Lactobacillus reuteri attenuates cardiac injury without lowering cholesterol in low-density lipoprotein receptor-deficient mice fed standard chow[J]. Am J Physiol Heart Circ Physiol, 2020, 319(1):32-41. doi:10.1152/ajpheart.00569.2019. |
[41] | WITKOWSKI M, WITKOWSKI M, FRIEBEL J, et al. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis[J]. Cardiovasc Res, 2022, 118(10):2367-2384. doi:10.1093/cvr/cvab263. |
[42] | CHEN S, JIANG P P, YU D, et al. Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: a double-blinded randomized controlled trial[J]. Eur J Nutr, 2021, 60(2):747-758. doi:10.1007/s00394-020-02278-1. |
[43] | JI J, WU L, WEI J, et al. The Gut Microbiome and ferroptosis in MAFLD[J]. J Clin Transl Hepatol, 2023, 11(1):174-187. doi:10.14218/JCTH.2022.00136. |
[44] | CHAPKIN R S, NAVARRO S L, HULLAR M A J, et al. Diet and gut microbes act coordinately to enhance programmed cell death and reduce colorectal cancer risk[J]. Dig Dis Sci, 2020, 65(3):840-851. doi:10.1007/s10620-020-06106-8. |
[45] | MALIK M, SUBOC T M, TYAGI S, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease[J]. Circ Res, 2018, 123(9):1091-1102. doi:10.1161/CIRCRESAHA.118.313565. |
[46] | MOLUDI J, ALIZADEH M, MOHAMMADZAD M H S, et al. The effect of probiotic supplementation on depressive symptoms and quality of life in patients after myocardial infarction:results of a preliminary double-blind clinical trial[J]. Psychosom Med, 2019, 81(9):770-777. doi:10.1097/PSY.0000000000000749. |
[47] | MOLUDI J, SAIEDI S, EBRAHIMI B, et al. Probiotics supplementation on cardiac remodeling following myocardial infarction:a single-center double-blind clinical study[J]. J Cardiovasc Transl Res, 2021, 14(2):299-307. doi:10.1007/s12265-020-10052-1. |
[48] | CHEN Y, CHEN R, WANG X, et al. Effect of probiotic supplementation on in-hospital mortality in patients with acute myocardial infarction:a study protocol for an open-label,randomized,controlled,superiority clinical trial[J]. Trials, 2023, 24(1):429. doi:10.1186/s13063-023-07443-5. |
[49] | BUSTAMANTE J M, DAWSON T, LOEFFLER C, et al. Impact of fecal microbiota transplantation on gut bacterial bile acid metabolism in humans[J]. Nutrients, 2022, 14(24):5200. doi:10.3390/nu14245200. |
[50] | MA J, LYU Y, LIU X, et al. Engineered probiotics[J]. Microb Cell Fact, 2022, 21(1):72. doi:10.1186/s12934-022-01799-0. |
[1] | 胡明月, 李鑫, 高磊, 关明杰. 蒙古黄芪皂苷对铅暴露致发育期大鼠神经炎症与肠道菌群紊乱的影响[J]. 天津医药, 2023, 51(9): 955-960. |
[2] | 祝淑平, 马丽, 叶晓林, 顾俊菲. 妊娠期糖尿病患者不同孕期肠道微生物和代谢产物水平变化与胰岛素抵抗的关系[J]. 天津医药, 2023, 51(6): 624-627. |
[3] | 孙强, 宋维亮. 新型冠状病毒肺炎对肠道微生物群及肠黏膜屏障缺陷影响机制的研究进展[J]. 天津医药, 2023, 51(1): 105-108. |
[4] | 葛军涛, 詹江华△. 胆道闭锁Kasai术后辅助治疗研究进展[J]. 天津医药, 2022, 50(1): 30-34. |
[5] | 李亚丹 , 周子伟 , 吴迪 , 雷平 . 脑创伤治疗的新靶点:脑-肠轴[J]. 天津医药, 2021, 49(8): 887-891. |
[6] | 杨洁珂, 王丽, 于千惠, 刁会, 樊均明. 黄芪多糖对小鼠慢性肾功能衰竭保护作用的机制研究[J]. 天津医药, 2021, 49(7): 713-718. |
[7] | 赵以琳, 于琴, 周娟, 严骅. 妊娠期母体肠道微生态调节对子代影响的研究进展 #br#[J]. 天津医药, 2021, 49(6): 668-672. |
[8] | 徐艳玲, 余意君, 顾力, 吴慧君, 郑伟, 周志云, 顾晔△. 碎裂QRS波与非ST段抬高型急性心肌梗死患者冠状动脉病变及左室功能的关系 #br#[J]. 天津医药, 2020, 48(5): 406-410. |
[9] | 霍星宇, 耿婕△. 肠道菌群及其代谢产物与心血管疾病关系的研究进展 #br#[J]. 天津医药, 2020, 48(5): 460-464. |
[10] | 姜薇, 孙微, 关莹莹, 程小磊. 二维斑点追踪成像技术评价缺血性二尖瓣反流患者PCI 治疗前后乳头肌功能的变化[J]. 天津医药, 2020, 48(2): 124-127. |
[11] | 王洁, 高静. 新型生物标志物TMAO与心血管疾病关系的研究进展[J]. 天津医药, 2020, 48(12): 1244-1248. |
[12] | 胡杨, 杨宁, 秦勤. 中性粒细胞与淋巴细胞比值和急性冠状动脉综合征的相关性及其对急性心肌梗死的诊断价值[J]. 天津医药, 2018, 46(9): 963-967. |
[13] | 王翠华, 刘衍恭, 郑明奇. 心型脂肪酸结合蛋白在心血管疾病中的作用[J]. 天津医药, 2018, 46(10): 1135-1139. |
[14] | 王芳,霍彦,刘艳妍,等.. 不同给药方法治疗细菌性阴道病对阴道微生态环境及免疫因子表达的影响[J]. 天津医药, 2016, 44(8): 1029-1032. |
[15] | 郭星梅,王东昕,韩聪聪,李姮,崔丽,徐延敏. 中性粒细胞/淋巴细胞比值对急性心肌梗死患者预后的价值[J]. 天津医药, 2015, 43(8): 840-844. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||