[1] |
OMI M, MISHINA Y. Roles of osteoclasts in alveolar bone remodeling[J]. Genesis, 2022, 60(8/9):e23490. doi:10.1002/dvg.23490.
|
[2] |
TSOLAKIS I A, VERIKOKOS C, PERREA D, et al. Effect of diet consistency on rat mandibular growth:a geometric morphometric and linear cephalometric study[J]. Biology(Basel), 2022, 11(6):901. doi:10.3390/biology11060901.
|
[3] |
KARAMANI I I, TSOLAKIS I A, MAKRYGIANNAKIS M A, et al. Impact of diet consistency on the mandibular morphology:a systematic review of studies on rat models[J]. Int J Environ Res Public Health, 2022, 19(5):2706. doi:10.3390/ijerph19052706.
|
[4] |
DENES B J, MAVROPOULOS A, BRESIN A, et al. Influence of masticatory hypofunction on the alveolar bone and the molar periodontal ligament space in the rat maxilla[J]. Eur J Oral Sci, 2013, 121(6):532-537. doi:10.1111/eos.12092.
|
[5] |
FUJIWARA S, HORI K, SHITARA S, et al. Effect of hard gummy candy chewing on masticatory function[J]. J Oral Rehabil, 2021, 48(8):909-915. doi:10.1111/joor.13208.
|
[6] |
TONNI I, RICCARDI G, PIANCINO M G, et al. The influence of food hardness on the physiological parameters of mastication:a systematic review[J]. Arch Oral Biol, 2020, 120:104903. doi:10.1016/j.archoralbio.2020.104903.
|
[7] |
FUJIWARA Y, KO Y, SONODA M, et al. Effects of vitamin E and dietary conditions on the differentiation and maturation of osteoclast[J]. J Nutr Sci Vitaminol(Tokyo), 2022, 68(1):73-77. doi:10.3177/jnsv.68.73.
|
[8] |
SATOMI K, NISHIMURA K, IGARASHI K. Semaphorin 3A protects against alveolar bone loss during orthodontic tooth movement in mice with periodontitis[J]. J Periodontal Res, 2022, 57(5):991-1002. doi:10.1111/jre.13038.
|
[9] |
JACOX L A, TANG N, LI Y, et al. Orthodontic loading activates cell-specific autophagy in a force-dependent manner[J]. Am J Orthod Dentofacial Orthop, 2022, 161(3):423-436.e1. doi:10.1016/j.ajodo.2020.09.034.
|
[10] |
MAVROPOULOS A, KILIARIDIS S, BRESIN A, et al. Effect of different masticatory functional and mechanical demands on the structural adaptation of the mandibular alveolar bone in young growing rats[J]. Bone, 2004, 35(1):191-197. doi:10.1016/j.bone.2004.03.020.
|
[11] |
JANG A, WANG B, USTRIYANA P, et al. Functional adaptation of interradicular alveolar bone to reduced chewing loads on dentoalveolar joints in rats[J]. Dent Mater, 2021, 37(3):486-495. doi:10.1016/j.dental.2020.12.003.
|
[12] |
AUNG P T, KATO C, FUJITA A, et al. Effects of low occlusal loading on the neuromuscular behavioral development of cortically-elicited jaw movements in growing rats[J]. Sci Rep, 2021, 11(1):7175. doi:10.1038/s41598-021-86581-9.
|
[13] |
CARINA V, DELLA BELLA E, COSTA V, et al. Bone's response to mechanical loading in aging and osteoporosis:molecular mechanisms[J]. Calcif Tissue Int, 2020, 107(4):301-318. doi:10.1007/s00223-020-00724-0.
|
[14] |
MORIISHI T, KOMORI T. Osteocytes:their lacunocanalicular structure and mechanoresponses[J]. Int J Mol Sci, 2022, 23(8):4373. doi:10.3390/ijms23084373.
|
[15] |
GUL AMUK N, KURT G, KARSLI E, et al. Effects of mesenchymal stem cell transfer on orthodontically induced root resorption and orthodontic tooth movement during orthodontic arch expansion protocols: an experimental study in rats[J]. Eur J Orthod, 2020, 42(3):305-316. doi:10.1093/ejo/cjz035.
|
[16] |
KIM J M, LIN C, STAVRE Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9):2073. doi:10.3390/cells9092073.
|
[17] |
MARCADET L, BOUREDJI Z, ARGAW A, et al. The roles of RANK/RANKL/OPG in cardiac,skeletal,and smooth muscles in health and disease[J]. Front Cell Dev Biol, 2022, 10:903657. doi:10.3389/fcell.2022.903657.
|
[18] |
THOMPSON W R, RUBIN C T, RUBIN J. Mechanical regulation of signaling pathways in bone[J]. Gene, 2012, 503(2):179-193. doi:10.1016/j.gene.2012.04.076.
|
[19] |
QUINN J M, WHITTY G A, BYRNE R J, et al. The generation of highly enriched osteoclast-lineage cell populations[J]. Bone, 2002, 30(1):164-170. doi:10.1016/s8756-3282(01)00654-8.
|
[20] |
MIYAZAKI T, KURIMOTO R, CHIBA T, et al. Mkx regulates the orthodontic tooth movement via osteoclast induction[J]. J Bone Miner Metab, 2021, 39(5):780-786. doi:10.1007/s00774-021-01233-2.
|
[21] |
ULLRICH N, SCHRöDER A, BAUER M, et al. The role of HIF-1α in nicotine-induced root and bone resorption during orthodontic tooth movement[J]. Eur J Orthod, 2021, 43(5):516-526. doi:10.1093/ejo/cjaa057.
|
[22] |
KANZAKI H, CHIBA M, SHIMIZU Y, et al. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis[J]. J Bone Miner Res, 2002, 17(2):210-220. doi:10.1359/jbmr.2002.17.2.210.
|
[23] |
邹昭琪, 许彤彤, 何川, 等. 咬合力影响大鼠下颌骨微结构发育的时序观察[J]. 实用口腔医学杂志, 2019, 35(1):15-19.
|
|
ZOU Z Q, XU T T, HE C, et al. Time series observation on microstructure development of mandibular bone under different occlusal force in rats[J]. J Pract Stomatol, 2019, 35(1):15-19. doi:10.3969/j.issn.1001-3733.2019.01.003.
|
[24] |
WEI T, SHAN Z, WEN X, et al. Dynamic alternations of RANKL/OPG ratio expressed by cementocytes in response to orthodontic-induced external apical root resorption in a rat model[J]. Mol Med Rep, 2022, 26(1):228. doi:10.3892/mmr.2022.12744.
|