[1] |
LIU D, HUANG S Y, SUN J H, et al. Sepsis-induced immunosuppression:mechanisms,diagnosis and current treatment options[J]. Mil Med Res, 2022, 9(1):56. doi:10.1186/s40779-022-00422-y.
|
[2] |
MORAES C A, ZAVERUCHA-DO-VALLE C, FLEURANCE R, et al. Neuroinflammation in sepsis:molecular pathways of microglia activation[J]. Pharmaceuticals(Basel), 2021, 14(5):416. doi:10.3390/ph14050416.
|
[3] |
YAN X, YANG K, XIAO Q, et al. Central role of microglia in sepsis-associated encephalopathy:from mechanism to therapy[J]. Front Immunol, 2022, 13:929316. doi:10.3389/fimmu.2022.929316.
|
[4] |
CATARINA A V, BRANCHINI G, BETTONI L, et al. Sepsis-associated encephalopathy:from pathophysiology to progress in experimental studies[J]. Mol Neurobiol, 2021, 58(6):2770-2779. doi:10.1007/s12035-021-02303-2.
|
[5] |
HEMING N, MAZERAUD A, VERDONK F, et al. Neuroanatomy of sepsis-associated encephalopathy[J]. Crit Care, 2017, 21(1):65. doi:10.1186/s13054-017-1643-z.
|
[6] |
BARICHELLO T, GIRIDHARAN V V, CATALãO C, et al. Neurochemical effects of sepsis on the brain[J]. Clin Sci(Lond), 2023, 137(6):401-414. doi:10.1042/CS20220549.
|
[7] |
KANG R, GAMDZYK M, LENAHAN C, et al. The dual role of microglia in blood-brain barrier dysfunction after stroke[J]. Curr Neuropharmacol, 2020, 18(12):1237-1249. doi:10.2174/1570159X18666200529150907.
|
[8] |
BORST K, DUMAS A A, PRINZ M. Microglia:immune and non-immune functions[J]. Immunity, 2021, 54(10):2194-2208. doi:10.1016/j.immuni.2021.09.014.
|
[9] |
BENNETT M L, BENNETT F C. The influence of environment and origin on brain resident macrophages and implications for therapy[J]. Nat Neurosci, 2020, 23(2):157-166. doi:10.1038/s41593-019-0545-6.
|
[10] |
LI Y F, REN X, ZHANG L, et al. Microglial polarization in TBI:signaling pathways and influencing pharmaceuticals[J]. Front Aging Neurosci, 2022, 14:901117. doi:10.3389/fnagi.2022.901117.
|
[11] |
QIU Z, WANG H, QU M, et al. Consecutive injection of high-dose lipopolysaccharide modulates microglia polarization via TREM2 to alter status of septic mice[J]. Brain Sci, 2023, 13(1):126. doi:10.3390/brainsci13010126.
|
[12] |
FAIRLEY L H, LAI K O, WONG J H, et al. Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2023, 120(8):e2209177120. doi:10.1073/pnas.2209177120.
|
[13] |
庄欣琪, 谢克亮, 于泳浩, 等. 小胶质细胞与脓毒症脑病的研究进展[J]. 天津医药, 2020, 48(4):338-342.
|
|
ZHUANG X Q, XIE K L, YU Y H, et al. Advances in research on microglia and sepsis associated encephalopathy[J] Tianjin Med J, 2020, 48(4):338-342. doi:10.11958/20193358.
|
[14] |
PENG W, TAN C, MO L, et al. Glucose transporter 3 in neuronal glucose metabolism:health and diseases[J]. Metabolism, 2021, 123:154869. doi:10.1016/j.metabol.2021.154869.
|
[15] |
DE SOUZA STORK S, HÜBNER M, BIEHL E, et al. Diabetes exacerbates sepsis-induced neuroinflammation and brain mitochondrial dysfunction[J]. Inflammation, 2022, 45(6):2352-2367. doi:10.1007/s10753-022-01697-y.
|
[16] |
GU M, MEI X L, ZHAO Y N. Sepsis and cerebral dysfunction:BBB damage,neuroinflammation,oxidative stress,apoptosis and autophagy as key mediators and the potential therapeutic approaches[J]. Neurotox Res, 2021, 39(2):489-503. doi:10.1007/s12640-020-00270-5.
|
[17] |
ZHANG B, PAN C, FENG C, et al. Role of mitochondrial reactive oxygen species in homeostasis regulation[J]. Redox Rep, 2022, 27(1):45-52. doi:10.1080/13510002.2022.2046423.
|
[18] |
RAUF A, BADONI H, ABU-IZNEID T, et al. Neuroinflammatory markers:key indicators in the pathology of neurodegenerative diseases[J]. Molecules, 2022, 27(10):3194. doi:10.3390/molecules27103194.
|
[19] |
GAO Q, HERNANDES M S. Sepsis-associated encephalopathy and blood-brain barrier dysfunction[J]. Inflammation, 2021, 44(6):2143-2150. doi:10.1007/s10753-021-01501-3.
|
[20] |
VAN DER POLL T, SHANKAR-HARI M, WIERSINGA W J. The immunology of sepsis[J]. Immunity, 2021, 54(11):2450-2464. doi:10.1016/j.immuni.2021.10.012.
|
[21] |
LI Y, YIN L, FAN Z, et al. Microglia:a potential therapeutic target for sepsis-associated encephalopathy and sepsis-associated chronic pain[J]. Front Pharmacol, 2020, 11:600421. doi:10.3389/fphar.2020.600421.
|
[22] |
TIEGS G, HORST A K. TNF in the liver:targeting a central player in inflammation[J]. Semin Immunopathol, 2022, 44(4):445-459. doi:10.1007/s00281-022-00910-2.
|
[23] |
CASTRO L V G, GONÇALVES-DE-ALBUQUERQUE C F, SILVA A R. Polarization of microglia and its therapeutic potential in sepsis[J]. Int J Mol Sci, 2022, 23(9):4925. doi:10.3390/ijms23094925.
|
[24] |
LI R, ZHOU Y, ZHANG S, et al. The natural(poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke[J]. Eur J Pharmacol, 2022, 914:174660. doi:10.1016/j.ejphar.2021.174660.
|
[25] |
MUNOZ PINTO M F, CAMPBELL S J, SIMOGLOU KARALI C, et al. Selective blood-brain barrier permeabilization of brain metastases by a type 1 receptor-selective tumor necrosis factor mutein[J]. Neuro Oncol, 2022, 24(1):52-63. doi:10.1093/neuonc/noab177.
|
[26] |
TANG C, JIN Y, WANG H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy[J]. Front Synaptic Neurosci, 2022, 14:1054605. doi:10.3389/fnsyn.2022.1054605.
|
[27] |
IOVINO L, TREMBLAY M E, CIVIERO L. Glutamate-induced excitotoxicity in Parkinson's disease:the role of glial cells[J]. J Pharmacol Sci, 2020, 144(3):151-164. doi:10.1016/j.jphs.2020.07.011.
|
[28] |
PIOVESANA R, SALAZAR INTRIAGO M S, DINI L, et al. Cholinergic modulation of neuroinflammation:focus on α7 nicotinic receptor[J]. Int J Mol Sci, 2021, 22(9):4912. doi:10.3390/ijms22094912.
|
[29] |
XIA Y, WU Q, MAK S, et al. Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells[J]. FASEB J, 2022, 36(3):e22189. doi:10.1096/fj.202101302RR.
|
[30] |
QIN M, GAO Y, GUO S, et al. Establishment and evaluation of animal models of sepsis-associated encephalopathy[J]. World J Emerg Med, 2023, 14(5):349-353. doi:10.5847/wjem.j.1920-8642.2023.088.
|
[31] |
WANG C, LI H, CHEN C, et al. High-fat diet consumption induces neurobehavioral abnormalities and neuronal morphological alterations accompanied by excessive microglial activation in the medial prefrontal cortex in adolescent mice[J]. Int J Mol Sci, 2023, 24(11):9394. doi:10.3390/ijms24119394.
|
[32] |
ZONG M M, ZHOU Z Q, JI M H, et al. Activation of β2-adrenoceptor attenuates sepsis-induced hippocampus-dependent cognitive impairments by reversing neuroinflammation and synaptic abnormalities[J]. Front Cell Neurosci, 2019, 13:293. doi:10.3389/fncel.2019.00293.
|
[33] |
EL-HUSSEINI A E, SCHNELL E, CHETKOVICH D M, et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science, 2000, 290(5495):1364-1368. doi:10.1126/science.290.5495.1364.
|
[34] |
WU H, WANG Y, FU H, et al. Maresin1 ameliorates sepsis-induced microglial neuritis induced through blocking TLR4-NF-κB-NLRP3 signaling pathway[J]. J Pers Med, 2023, 13(3):534. doi:10.3390/jpm13030534.
|
[35] |
LUO X Y, YING J H, WANG Q S. miR-25-3p ameliorates SAE by targeting the TLR4/NLRP3 axis[J]. Metab Brain Dis, 2022, 37(6):1803-1813. doi:10.1007/s11011-022-01017-1.
|
[36] |
BAKHSHI S, SHAMSI S. MCC950 in the treatment of NLRP3-mediated inflammatory diseases:latest evidence and therapeutic outcomes[J]. Int Immunopharmacol, 2022, 106:108595. doi:10.1016/j.intimp.2022.108595.
|
[37] |
SHEN Y, ZHANG Y, DU J, et al. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway[J]. J Neuroinflammation, 2021, 18(1):246. doi:10.1186/s12974-021-02300-1.
|
[38] |
LIU W, TASO O, WANG R, et al. Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions[J]. Hum Mol Genet, 2020, 29(19):3224-3248. doi:10.1093/hmg/ddaa209.
|
[39] |
BERNIER L P, YORK E M, MACVICAR B A. Immunometabolism in the brain:how metabolism shapes microglial function[J]. Trends Neurosci, 2020, 43(11):854-869. doi:10.1016/j.tins.2020.08.008.
|
[40] |
CHENG J, ZHANG R, XU Z, et al. Early glycolytic reprogramming controls microglial inflammatory activation[J]. J Neuroinflammation, 2021, 18(1):129. doi:10.1186/s12974-021-02187-y.
|