[1] |
ZEIGERER A. NAFLD-A rising metabolic disease[J]. Mol Metab, 2021, 50:101274. doi:10.1016/j.molmet.2021.101274.
|
[2] |
王莲, 肖继椿, 田垚, 等. 柿叶黄酮通过激活自噬与抗氧化应激协同作用改善NAFLD大鼠肝脏脂肪变性[J]. 天津医药, 2023, 51(11):1211-1216.
|
|
WANG L, XIAO J C, TIAN Y, et al. Study of persimmon leaf flavonoids ameliorates liver steatosis by activating autophagy and antioxidant stress in NAFLD rats[J]. Tianjin Med J, 2023, 51(11):1211-1216. doi:10.11958/20230145.
|
[3] |
GUO X, YIN X, LIU Z, et al. Non-alcoholic fatty liver disease(NAFLD)pathogenesis and natural products for prevention and treatment[J]. Int J Mol Sci, 2022, 23(24):15489. doi:10.3390/ijms232415489.
|
[4] |
郑少阳, 智慧, 王曼, 等. 酒精性肝病患者外周血sTim-3、sST2水平与疾病严重程度的相关性[J]. 天津医药, 2025, 53(4):383-388.
|
|
ZHENG S Y, ZHI H, WANG M, et al. Correlation between levels of sTim-3 and sST2 in peripheral blood and disease severity in patients with alcoholic liver disease[J]. Tianjin Med J, 2025, 53(4):383-388. doi:10.11958/20241794.
|
[5] |
ISLAM A, ISLAM M S, RAHMAN M K, et al. The pharmacological and biological roles of eriodictyol[J]. Arch Pharm Res, 2020, 43(6):582-592. doi:10.1007/s12272-020-01243-0.
|
[6] |
DENG Z, HASSAN S, RAFIQ M, et al. Pharmacological activity of eriodictyol:the major natural polyphenolic flavanone[J]. Evid Based Complement Alternat Med, 2020, 2020:6681352. doi:10.1155/2020/6681352.
|
[7] |
杨敏, 张锋, 付姣, 等. 圣草酚对高脂饮食诱导的糖尿病大鼠肝损伤的保护作用及机制探讨[J]. 天津中医药大学学报, 2022, 41(3):355-360.
|
|
YANG M, ZHANG F, FU J, et al. The protective effect and mechanism of eriodictyol on the liver injury in diabetic rats induced by high-fat diet[J]. Journal of Traditional Tianjin University of Traditional Chinese Medicine, 2022, 41(3):355-360. doi:10.11656/j.issn.1673-9043.2022.03.17.
|
[8] |
王楷扬, 袁烈, 宋燚, 等. 圣草酚调控MAPK和Nrf2/HO-1信号通路缓解非酒精性脂肪肝的作用及机制[J]. 中国药房, 2023, 34(23):2880-2885.
|
|
WANG K Y, YUAN L, SONG Y, et al. Effect and mechanism of eriodictyol on non-alcoholic fatty liver disease by regulating MAPK and Nrf2/HO-1 signaling pathway[J]. China Pharmacy, 2023, 34(23):2880-2885. doi:10.6039/j.issn.1001-0408.2023.23.11.
|
[9] |
XU X, DONG Y, LIU M, et al. Clinical significance of UbA52 level in the urine of patients with type 2 diabetes mellitus and diabetic kidney disease[J]. Nefrologia(Engl Ed), 2021, 41(5):548-555. doi:10.1016/j.nefroe.2021.11.009.
|
[10] |
TONG L, ZHENG X, WANG T, et al. Inhibition of UBA52 induces autophagy via EMC6 to suppress hepatocellular carcinoma tumorigenesis and progression[J]. J Cell Mol Med, 2024, 28(6):e18164. doi:10.1111/jcmm.18164.
|
[11] |
张潘, 汪磊, 陈洁, 等. 刺梨多糖对非酒精性脂肪肝小鼠回肠黏膜屏障功能的影响[J]. 食品科学, 2023, 44(3):127-136.
|
|
ZHANG P, WANG L, CHEN J, et al. Effects of polysaccharides from rosa roxburghii tratt fruit on ileal mucosal barrier function in mice with non-alcoholic fatty[J]. Liver Food Science, 2023, 44(3):127-136. doi:10.7506/spkx1002-6630-20220301-003.
|
[12] |
FLESSA C M, NASIRI-ANSARI N, KYROU I, et al. Genetic and diet-induced animal models for non-alcoholic fatty liver disease(NAFLD)research[J]. Int J Mol Sci, 2022, 23(24):15791. doi:10.3390/ijms232415791.
|
[13] |
RIVES C, FOUGERAT A, ELLERO-SIMATOS S, et al. Oxidative stress in NAFLD:role of nutrients and food contaminants[J]. Biomolecules, 2020, 10(12):1702. doi:10.3390/biom10121702.
|
[14] |
JAHN D, KIRCHER S, HERMANNS H M, et al. Animal models of NAFLD from a hepatologist's point of view[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(5):943-953. doi:10.1016/j.bbadis.2018.06.023.
|
[15] |
ZHANG N, LIU T, WANG J, et al. Si-Ni-San reduces hepatic lipid deposition in rats with metabolic associated fatty liver disease by AMPK/SIRT1 pathway[J]. Drug Des Devel Ther, 2023, 17:3047-3060. doi:10.2147/DDDT.S417378.
|
[16] |
印国良, 梁鸿艺, 梁朋朋, 等. 薯蓣皂苷元对非酒精性脂肪肝病模型大鼠mTOR/FASN/HIF-1α/VEGFA表达的影响[J]. 中国中药杂志, 2023, 48(7):1760-1769.
|
|
YIN G L, LIANG H Y, LIANG P P, et al. Effect of diosgenin on mTOR/FASN/HIF-1α/VEGFA expression in rats with non-alcoholic fatty liver disease[J]. China Journal of Chinese Materia Medica, 2023, 48(7):1760-1769. doi:10.19540/j.cnki.cjcmm.20221123.401.
|
[17] |
LI J, WANG T, LIU P, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD[J]. Food Funct, 2021, 12(9):3898-3918. doi:10.1039/d0fo02736g.
|
[18] |
AN X, LIU J, LI Y, et al. Chemerin/CMKLR1 ameliorates nonalcoholic steatohepatitis by promoting autophagy and alleviating oxidative stress through the JAK2-STAT3 pathway[J]. Peptides, 2021, 135:170422. doi:10.1016/j.peptides.2020.170422.
|
[19] |
HE Y, YANG W, GAN L, et al. Silencing HIF-1α aggravates non-alcoholic fatty liver disease in vitro through inhibiting PPAR-α/ANGPTL4 singling pathway[J]. Gastroenterol Hepatol, 2021, 44(5):355-365. doi:10.1016/j.gastrohep.2020.09.014.
|
[20] |
王楷扬. 圣草酚缓解非酒精性脂肪肝的作用及机制研究[D]. 重庆: 陆军军医大学, 2024.
|
|
WANG K Y. Study on the effect and mechanism of eriodictyol on nonalcoholic fatty liver disease[D]. Chongqing: Army Medical University, 2024. doi:10.27001/d.cnki.gtjyu.2024.000244.
|
[21] |
LEE S O, KELLIHER J L, SONG W, et al. UBA80 and UBA52 fine-tune RNF168-dependent histone ubiquitination and DNA repair[J]. J Biol Chem, 2023, 299(8):105043. doi:10.1016/j.jbc.2023.105043.
|
[22] |
ZHOU Q, HOU Z, ZUO S, et al. LUCAT1 promotes colorectal cancer tumorigenesis by targeting the ribosomal protein L40-MDM2-p53 pathway through binding with UBA52[J]. Cancer Sci, 2019, 110(4):1194-1207. doi:10.1111/cas.13951.
|
[23] |
周娟. HSPA8/AUTOPHAGY调节铁死亡在利福平诱发肝细胞损伤中的作用与机制[D]. 长沙: 中南大学, 2024.
|
|
ZHOU J. Ferroptosis regulated by HSPA8/AUTOPHAGY contributes to the mechanism of rifampicin-induced liver injury[D]. Changsha: Central South University, 2024. doi:10.27661/d.cnki.gzhnu.2022.006449.
|
[24] |
SUN D Y, FU J T, LI G Q, et al. iTRAQ- and LC-MS/MS-based quantitative proteomics reveals Pqlc2 as a potential regulator of hepatic glucose metabolism and insulin signalling pathway during fasting[J]. Clin Exp Pharmacol Physiol, 2021, 48(2):238-249. doi:10.1111/1440-1681.13419.
|