天津医药 ›› 2020, Vol. 48 ›› Issue (1): 63-67.doi: 10.11958/20192347

• 临床研究 • 上一篇    下一篇

构建2型糖尿病患者心脑血管疾病风险评分模型及验证

孟祥英 1,周勇 1△,王奕 1,赵倩 1,陈峰 1,石勇铨 2△,汤玮 2   

  1. 基金项目:上海市徐汇区医学科技项目(SHXH201611) 作者单位:1上海市徐汇区大华医院内分泌科(邮编200237);2中国人民解放军海军军医大学附属长征医院 作者简介:孟祥英(1977),女,硕士,主治医师,主要从事糖尿病大血管方面研究 △通讯作者 周勇E-mail: shzhouyy@163.com;石勇铨E-mail: young.stong@163.com
  • 收稿日期:2019-08-01 修回日期:2019-10-18 出版日期:2020-01-15 发布日期:2020-01-15
  • 通讯作者: 孟祥英 E-mail:lingzhi771@126.com
  • 基金资助:
    2型糖尿病患者心脑血管疾病风险评分模型的构建及意义

Construction and verification of risk assessment model for cardio-cerebrovascular diseases in type 2 diabetes mellitus

MENG Xiang-ying1, ZHOU Yong1△, WANG Yi1, ZHAO Qian1, CHEN Feng1, SHI Yong-quan2△, TANG Wei2   

  1. 1 Department of endocrinlolgy, Dahua Hospital, Xuhui District, Shanghai 200237, China; 2 Changzheng Hospital, PLA Naval Military Medical University, Shanghai 200003, China
  • Received:2019-08-01 Revised:2019-10-18 Published:2020-01-15 Online:2020-01-15
  • Contact: Xiang-Ying Meng E-mail:lingzhi771@126.com

摘要: 目的 构建2型糖尿病(T2DM)患者心脑血管风险评分模型。方法 选自本院糖尿病管理库的2 175例患 者,选取26个风险因素变量,通过单因素分析及多因素Cox回归分析终点事件确定T2DM心脑血管疾病发生的独立 危险因素,构建预测T2DM心脑血管病变的风险评分模型。结果 建模组中位随访时间5.1年,出现终点事件共145 例,T2DM患者发生心脑血管风险分数为=0.059×年龄(年)+0.936×吸烟(有=1)+0.006×糖化血红蛋白(%)+0.380×糖尿 病病程(年)+0.048×体质量指数(kg/m2)+0.009×收缩压(mmHg)+0.807×心房纤颤(有=1)+0.175×非高密度脂蛋白胆固 醇(mmol/L)-0.034×估算肾小球滤过率(Lg mL/min)。预测 5 年内 T2DM 患者发生心脑血管疾病的概率为 P∧ = 1 - 0.928exp(∑ip= 1βi χi - 12.736 ),验证组评价模型预测效能的拟合优度 HL χ2=1.49,P=0.81;ROC 曲线下面积为 0.798,95%CI: 0.759~0.818。结论 构建简单的T2DM患者心脑血管发病的风险评分模型并进行验证,可以对T2DM个人进行心 脑血管发病风险监测,为临床治疗提供依据。

关键词: 动脉硬化, 心血管疾病, 糖尿病, 2型, 风险评分模型

Abstract: Objective To establish a risk assessment model of cardio-cerebrovascular events in type 2 diabetes mellitus (T2DM) patients. Methods The study was conducted retrospectively to analysis 2 175 T2DM patients from diabetes mellitus management database. A total of 26 risk factor variables were chosen. The independent risk factors for the incidence of cardiovascular and cerebrovascular diseases of T2DM were evaluated by univariate and multivariate Cox regression analysis, and to construct a predictive incidence risk score model of cardio-cerebral vascular disease for T2DM. Results The median follow-up duration was 5.1 years in the model group. A total of 145 cases were diagnosed as the occurrence of cardio-cerebrovascular events at the end of follow-up. The cardio-cerebrovascular risk model for T2DM patients was 0.059×age (years)+0.936×smoking (yes=1)+0.006×glycosylated hemoglobin (%)+0.380×duration of diabetes (years)+0.048×body mass index (kg/m2)+0.009×systolic blood pressure (mmHg)+0.807×atrial fibrillation (yes=1)+0.175× non-high-density lipoprotein cholesterol (mmol/L)-0.034×log glomerular filtration rate(mL/min). The predictive probability of cardio-cerebrovascular disease in T2DM patients for five years was P ∧ = 1 - 0.928exp(∑i p= 1βi χi - 12.736 ). The goodness-of-fit result for the risk assessment model in the validation group was HL χ2=1.49, P=0.81, and the area under ROC curve was 0.798 and 95%CI was 0.759-0.818. Conclusion A simple risk assessment model on the occurrence of cardiocerebrovascular events with T2DM patients is established, which will not only contribute to monitor the risk of cardiocerebrovascular incidents of T2DM patients, but help to provide basis for clinical treatment.

Key words: arteriosclerosis, cardiovascular diseases, diabetes mellitus, type 2, risk assessment model