[1] |
GUO J, SMITH S M. Newer drug treatments for type 2 diabetes[J]. BMJ, 2021, 373:n1171. doi:10.1136/bmj.n1171.
|
[2] |
THOMAS M C. Type 2 diabetes and heart failure:Challenges and solutions[J]. Curr Cardiol Rev, 2016, 12(3): 249-255. doi:10.2174/1573403x12666160606120254.
|
[3] |
DIXON K O, DAS M, KUCHROO V K. Human disease mutations highlight the inhibitory function of TIM-3[J]. Nat Genet, 2018, 50(12):1640-1641. doi:10.1038/s41588-018-0289-3.
|
[4] |
GROSSMAN T B, MINIS E, LOEB-ZEITLIN S E, et al. Soluble T cell immunoglobulin mucin domain 3(sTim-3)in maternal sera:A potential contributor to immune regulation during pregnancy[J]. J Matern Fetal Neonatal Med, 2021, 34(24):4119-4122. doi:10.1080/14767058.2019.1706471.
|
[5] |
HASTINGS W D, ANDERSON D E, KASSAM N, et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines[J]. Eur J Immunol, 2009, 39:2492-2501. doi:10.1002/eji.200939274.
|
[6] |
CHEN S, DONG Z, YANG P, et al. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis[J]. Cancer Lett, 2017, 394:22-32. doi:10.1016/j.canlet.2017.02.011.
|
[7] |
钟玉梅, 陈洋, 罗小超, 等. Tim-3调控巨噬细胞极化在类风湿性关节炎中的研究进展[J]. 天津医药, 2020, 48(9):898-902.
|
|
ZHONG Y M, CHEN Y, LUO X C, et al. Research progress of Tim-3 regulating the polarization of macrophage in rheumatoid arthritis[J]. Tianjin Med J, 2020, 48(9):898-902. doi:10.11958/20200625.
|
[8] |
KAMATA Y, TAKANO K, KISHIHARA E, et al. Distinct clinical characteristics and therapeutic modalities for diabetic ketoacidosis in type 1 and type 2 diabetes mellitus[J]. J Diabetes Complications, 2017, 31(2):468-472. doi:10.1016/j.jdiacomp.2016.06.023.
|
[9] |
NYAMBUYA T M, DLUDLA P V, MXINWA V, et al. T-cell activation and cardiovascular risk in adults with type 2 diabetes mellitus:A systematic review and meta-analysis[J]. Clin Immunol, 2020, 210:108313. doi:10.1016/j.clim.2019.108313.
|
[10] |
WANG H, CAO K, LIU S, et al. Tim-3 expression causes NK cell dysfunction in type 2 diabetes patients[J]. Front Immunol, 2022, 13:852436. doi:10.3389/fimmu.2022.852436.
|
[11] |
石新慧. 可溶性Tim-3在疾病中的表达及其意义的研究[D]. 北京: 中国人民解放军军事医学科学院基础医学研究所, 2016.
|
|
SHI X H. Expression and clinical significance of soluble Tim-3 in different diseases[D]. Beijing: Institute of Basic Medical Sciences, Academy of Military Medical Sciences, 2016.
|
[12] |
ZHANG J, ZHAN F, LIU H L. Expression level and significance of Tim-3 in CD4+ T lymphocytes in peripheral blood of patients with coronary heart disease[J]. Braz J Cardiovasc Surg, 2022, 37(3):350-355. doi:10.21470/1678-9741-2020-0509.
|
[13] |
HOU N, ZHAO D, LIU Y, et al. Increased expression of T cell immunoglobulin- and mucin domain-containing molecule-3 on natural killer cells in atherogenesis[J]. Atherosclerosis, 2012, 222(1):67-73. doi:10.1016/j.atherosclerosis.2012.02.009.
|
[14] |
HAO H, HE M, LI J, et al. Upregulation of the Tim-3/Gal-9 pathway and correlation with the development of preeclampsia[J]. Eur J Obstet Gynecol Reprod Biol, 2015, 194:85-91. doi:10.1016/j.ejogrb.2015.08.022.
|
[15] |
HIRASHIMA M, KASHIO Y, NISHI N, et al. Galectin-9 in physiological and pathological conditions[J]. Glycoconj J, 2002, 19(7/8/9):593-600. doi:10.1023/B:GLYC.0000014090.63206.2f.
|
[16] |
SAKAI K, KAWATA E, ASHIHARA E, et al. Galectin-9 ameliorates acute GVH disease through the induction of T-cell apoptosis[J]. Eur J Immunol, 2011, 41(1):67-75. doi:10.1002/eji.200939931.
|
[17] |
MANSOUR A A, RAUCCI F, SAVIANO A, et al. Galectin-9 regulates monosodium urate crystal-induced gouty inflammation through the modulation of Treg/Th17 ratio[J]. Front Immunol, 2021, 12:762016. doi:10.3389/fimmu.2021.762016.
|
[18] |
SUN L, ZOU S, DING S, et al. Circulating T cells exhibit different TIM3/Galectin-9 expression in patients with obesity and obesity-related diabetes[J]. J Diabetes Res, 2020, 2020:2583257. doi:10.1155/2020/2583257.
|
[19] |
KUROSE Y, WADA J, KANZAKI M O, et al. Serum galectin-9 levels are elevated in the patients with type 2 diabetes and chronic kidney disease[J]. BMC Nephrol, 2013, 14:23. doi:10.1186/1471-2369-14-23.
|
[20] |
SU Z, WANG T, ZHU H, et al. HMGB1 modulates Lewis cell autophagy and promotes cell survival via RAGE-HMGB1-Erk1/2 positive feedback during nutrient depletion[J]. Immunobiology, 2015, 220(5):539-544. doi:10.1016/j.imbio.2014.12.009.
|
[21] |
BEHL T, SHARMA E, SEHGAL A, et al. Expatiating the molecular approaches of HMGB1 in diabetes mellitus:Highlighting signalling pathways via RAGE and TLRs[J]. Mol Biol Rep, 2021, 48(2):1869-1881. doi:10.1007 /s11033-020-06130-x.
|
[22] |
CHEN Y, QIAO F, ZHAO Y, et al. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose[J]. Int J Clin Exp Pathol, 2015, 8(6):6683-6691.
|
[23] |
BENLIER N, ERDOĞAN M B, KEÇIOĞLU S, et al. Association of high mobility group box 1 protein with coronary artery disease[J]. Asian Cardiovasc Thorac Ann, 2019, 27(4):251-255. doi:10.1177/0218492319835725.
|