[1] |
JIA L, QUAN M, FU Y, et al. Dementia in China:epidemiology,clinical management,and research advances[J]. Lancet Neurol, 2020, 19(1):81-92. doi:10.1016/S1474-4422(19)30290-X.
|
[2] |
ZHENG Y, CHEN Z Y, MA W J, et al. B Vitamins supplementation can improve cognitive functions and may relate to the enhancement of transketolase activity in a rat model of cognitive impairment associated with high-fat diets[J]. Curr Med Sci, 2021, 41(5):847-856. doi:10.1007/s11596-021-2456-5.
|
[3] |
WANG R, ZHOU Z, WANG D, et al. Caloric restriction ameliorates high-fat diet induced cognitive deficits through attenuating neuroinflammation via the TREM2-PI3K/AKT signaling pathway[J]. Food Funct, 2021, 12(14):6464-6478. doi:10.1039/d0fo02946g.
|
[4] |
赵久红, 童佳婷, 沈郅珺, 等. 环状RNA与氧化应激互作机制的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(3):393-399.
|
|
ZHAO J H, TONG J T, SHEN Z J, et al. Research progress on the interaction mechanism between circular RNA and oxidative stress[J]. Journal of Shanghai Jiaotong University(Medical Science), 2022, 42(3):393-399. doi:10.3969/j.issn.1674-8115.2022.03.02.
|
[5] |
MATSUZAWA-NAGATA N, TAKAMURA T, ANDO H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity[J]. Metabolism, 2008, 57(8):1071-1077. doi:10.1016/j.metabol.2008.03.010.
|
[6] |
TANGVARASITTICHAI S. Oxidative stress,insulin resistance,dyslipidemia and type 2 diabetes mellitus[J]. World J Diabetes, 2015, 6(3):456-480. doi:10.4239/wjd.v6.i3.456.
|
[7] |
TAN B L, NORHAIZAN M E. Effect of high-fat diets on oxidative stress,cellular inflammatory response and cognitive function[J]. Nutrients, 2019, 11(11):2579. doi:10.3390/nu11112579.
|
[8] |
WANG Z, GE Q, WU Y, et al. Impairment of long-term memory by a short-term high-fat diet via hippocampal oxidative stress and alterations in synaptic plasticity[J]. Neuroscience, 2020, 424:24-33. doi:10.1016/j.neuroscience.2019.10.050.
|
[9] |
STRANAHAN A M, CUTLER R G, BUTTON C, et al. Diet-induced elevations in serum cholesterol are associated with alterations in hippocampal lipid metabolism and increased oxidative stress[J]. J Neurochem, 2011, 118(4):611-615. doi:10.1111/j.1471-4159.2011.07351.x.
|
[10] |
NEHA, KUMAR A, JAGGI A S, et al. Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia[J]. Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(8):777-787. doi:10.1007/s00210-014-0990-4.
|
[11] |
XU J, GAO H, ZHANG L, et al. Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet[J]. J Pineal Res, 2019, 67(2):e12584. doi:10.1111/jpi.12584.
|
[12] |
YANG X, ZHENG M, HAO S, et al. Curdlan prevents the cognitive deficits induced by a high-fat diet in mice via the gut-brain axis[J]. Front Neurosci, 2020, 14:384. doi:10.3389/fnins.2020.00384.
|
[13] |
BAUFELD C, OSTERLOH A, PROKOP S, et al. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia[J]. Acta Neuropathol, 2016, 132(3):361-375. doi:10.1007/s00401-016-1595-4.
|
[14] |
郭海, 姚巧玲. 胰岛素在中枢和外周调控机体食欲机制的研究进展[J]. 医学综述, 2022, 28(9):1771-1775.
|
|
GUO H, YAO Q L. Research progress in mechanism of insulin in central and peripheral regulation of appetite[J]. Medical Recapitulate, 2022, 28(9):1771-1775. doi:1006-2084(2022)09-1771-05.
|
[15] |
XIONG J, DENG I, KELLINY S, et al. Long term high fat diet induces metabolic disorders and aggravates behavioral disorders and cognitive deficits in MAPT P301L transgenic mice[J]. Metab Brain Dis, 2022, 37(6):1941-1957. doi:10.1007/s11011-022-01029-x.
|
[16] |
SHARMA S, TALIYAN R. Synergistic effects of GSK-3β and HDAC inhibitors in intracerebroventricular streptozotocin-induced cognitive deficits in rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2015, 388(3):337-349. doi:10.1007/s00210-014-1081-2.
|
[17] |
OLDE ENGBERINK A, HERNANDEZ R, DE GRAAN P, et al. Rapamycin-sensitive late-LTP is enhanced in the hippocampus of IL-6 transgenic mice[J]. Neuroscience, 2017, 367:200-210. doi:10.1016/j.neuroscience.2017.10.040.
|
[18] |
KISHI T, HIROOKA Y, NAGAYAMA T, et al. Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor:tropomyosin-related kinase B in hippocampus of obesity-induced hypertensive rats[J]. Int Heart J, 2015, 56(1):110-115. doi:10.1536/ihj.14-168.
|
[19] |
IBRAHIM A M, CHAUHAN L, BHARDWAJ A, et al. Brain-derived neurotropic factor in neurodegenerative disorders[J]. Biomedicines, 2022, 10(5):1143. doi:10.3390/biomedicines10051143.
|
[20] |
ZHANG J, CAI C Y, WU H Y, et al. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors[J]. Sci Rep, 2016, 6:29551. doi:10.1038/srep29551.
|
[21] |
DINGESS P M, DARLING R A, KURT DOLENCE E, et al. Exposure to a diet high in fat attenuates dendritic spine density in the medial prefrontal cortex[J]. Brain Struct Funct, 2017, 222(2):1077-1085. doi:10.1007/s00429-016-1208-y.
|
[22] |
YOON G, CHO K A, SONG J, et al. Transcriptomic analysis of high fat diet fed mouse brain cortex[J]. Front Genet, 2019, 10:83. doi:10.3389/fgene.2019.00083.
|
[23] |
NATION D A, SWEENEY M D, MONTAGNE A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction[J]. Nat Med, 2019, 25(2):270-276. doi:10.1038/s41591-018-0297-y.
|
[24] |
OGATA S, ITO S, MASUDA T, et al. Changes of blood-brain barrier and brain parenchymal protein expression levels of mice under different insulin-resistance conditions induced by high-fat diet[J]. Pharm Res, 2019, 36(10):141. doi:10.1007/s11095-019-2674-8.
|
[25] |
KHAN A, KALARIA R N, CORBETT A, et al. Update on vascular dementia[J]. J Geriatr Psychiatry Neurol, 2016, 29(5):281-301. doi:10.1177/0891988716654987.
|
[26] |
孙美, 侯晓夏, 程虹. 慢性脑灌注不足与血管性认知损害[J]. 国际脑血管病杂志, 2018, 26(12):921-926.
|
|
SUN M, HOU X X, CHEN H. Chronic cerebral hypoperfusion and vascular cognitive impairment[J]. International Journal of Cerebrovascular Diseases, 2018, 26(12):921-926. doi:10.3760/cma.j.issn.1673-4165.2018.12.009.
|
[27] |
BRACKO O, VINARCSIK L K, CRUZ HERNáNDEZ J C, et al. High fat diet worsens Alzheimer's disease-related behavioral abnormalities and neuropathology in APP/PS1 mice,but not by synergistically decreasing cerebral blood flow[J]. Sci Rep, 2020, 10(1):9884. doi:10.1038/s41598-020-65908-y.
|
[28] |
MANEECHOTE C, CHUNCHAI T, APAIJAI N, et al. Pharmacological targeting of mitochondrial fission and fusion alleviates cognitive impairment and brain pathologies in pre-diabetic rats[J]. Mol Neurobiol, 2022, 59(6):3690-3702. doi:10.1007/s12035-022-02813-7.
|
[29] |
WANG J, ZHANG W, LI M, et al. The new coumarin compound Bis 3 ameliorates cognitive disorder and suppresses brain-intestine-liver systematic oxidative stress in high-fat diet mice[J]. Biomed Pharmacother, 2021, 137:111293. doi:10.1016/j.biopha.2021.111293.
|
[30] |
PARK S K, LEE H L, KANG J Y, et al. Peanut(Arachis hypogaea)sprout prevents high-fat diet-induced cognitive impairment by improving mitochondrial function[J]. Sci Rep, 2022, 12(1):6213. doi:10.1038/s41598-022-10520-5.
|
[31] |
MANDWIE M, KARUNIA J, NIAZ A, et al. Metformin treatment attenuates brain inflammation and rescues PACAP/VIP neuropeptide alterations in mice fed a high-fat diet[J]. Int J Mol Sci, 2021, 22(24):13660. doi:10.3390/ijms222413660.
|
[32] |
SUN P, WANG M, LI Z, et al. Eucommiae cortex polysaccharides mitigate obesogenic diet-induced cognitive and social dysfunction via modulation of gut microbiota and tryptophan metabolism[J]. Theranostics, 2022, 12(8):3637-3655. doi:10.7150/thno.72756.
|
[33] |
PARANDE F, DAVE A, PARK E J, et al. Effect of dietary grapes on female C57BL6/J mice consuming a high-fat diet:Behavioral and genetic changes[J]. Antioxidants(Basel), 2022, 11(2):414. doi:10.3390/antiox11020414.
|
[34] |
EL GAAMOUCH F, LIN H Y, WANG Q, et al. Peripheral and cognitive benefits of physical exercise in a mouse model of midlife metabolic syndrome[J]. Sci Rep, 2022, 12(1):3260. doi:10.1038/s41598-022-07252-x.
|
[35] |
MACIEJCZYK M, ŻEBROWSKA E, NESTEROWICZ M, et al. α-lipoic acid reduces ceramide synthesis and neuroinflammation in the hypothalamus of insulin-resistant rats,while in the cerebral cortex diminishes the β-amyloid accumulation[J]. J Inflamm Res, 2022, 15:2295-2312. doi:10.2147/JIR.S358799.
|
[36] |
JI Y, LANG X, WANG W, et al. Lactobacillus paracasei ameliorates cognitive impairment in high-fat induced obese mice via insulin signaling and neuroinflammation pathways[J]. Food Funct, 2021, 12(18):8728-8737. doi:10.1039/d1fo01320c.
|
[37] |
王静芝, 杜艳军, 陈丽, 等. 电针对高脂饮食诱导的胰岛素抵抗大鼠下丘脑β淀粉样蛋白、Tau蛋白磷酸化水平与糖原合成酶激酶-3的影响[J]. 中国中医基础医学杂志, 2021, 27(5):760-764.
|
|
WANG J Z, DU Y J, CHEN L, et al. Effects of electro-acupuncture on the amyloid protein β and phosphorylation levels of Tau protein and GSK-3 in hypothalamus of insulin resistance rats induced by high-fat diet[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2021, 27(5):760-764. doi:10.19945/j.cnki.issn.1006-3250.2021.05.016.
|
[38] |
HUBER G, OGRODNIK M, WENZEL J, et al. Telmisartan prevents high-fat diet-induced neurovascular impairments and reduces anxiety-like behavior[J]. J Cereb Blood Flow Metab, 2021, 41(9):2356-2369. doi:10.1177/0271678X211003497.
|