[1] |
DESAI T J, BROWNFIELD D G, KRASNOW M A. Alveolar progenitor and stem cells in lung development,renewal,and cancer[J]. Nature, 2014, 507(7491):190-194. doi:10.1038/nature12930.
|
[2] |
WANG J, LI X, CHEN H. Organoid models in lung regeneration and cancer[J]. Cancer Lett, 2020, 475:129-135. doi:10.1016/j.canlet.2020.01.030.
|
[3] |
REYNOLDS S D, MALKINSON A M. Clara cell:progenitor for the bronchiolar epithelium[J]. Int J Biochem Cell Biol, 2010, 42(1):1-4. doi:10.1016/j.biocel.2009.09.002.
|
[4] |
CURRAN D R, COHN L. Advances in mucous cell metaplasia:A plug for mucus as a therapeutic focus in chronic airway disease[J]. Am J Respir Cell Mol Biol, 2010, 42(3):268-275. doi:10.1165/rcmb.2009-0151TR.
|
[5] |
SHOME G P, STARNES J D 3rd, SHEARER M, et al. Exhaled nitric oxide in asthma:variability,relation to asthma severity,and peripheral blood lymphocyte cytokine expression[J]. J Asthma, 2006, 43(2):95-99. doi:10.1080/02770900500497925.
|
[6] |
李双艳. 一氧化氮对起到祖细胞功能和代谢的调控[D]. 天津: 天津医科大学, 2021.
|
|
LI S Y. Nitric oxide regulates the function and cellular metabolism of airway progenitor cells[D]. Tianjin: Tianjin Medical University, 2021.
|
[7] |
DRAPIER J C, HIBBS J B JR. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible[J]. J Clin Invest, 1986, 78(3):790-797. doi:10.1172/JCI112642.
|
[8] |
LI K, LI M, LI W, et al. Airway epithelial regeneration requires autophagy and glucose metabolism[J]. Cell Death Dis, 2019, 10(12):875. doi:10.1038/s41419-019-2111-2.
|
[9] |
KORN S, WILK M, VOIGT S, et al. Measurement of fractional exhaled nitric oxide:comparison of three different analysers[J]. Respiration, 2020, 99(1):1-8. doi:10.1159/000500727.
|
[10] |
GRANILLO O M, BRAHMAJOTHI M V, LI S, et al. Pulmonary alveolar epithelial uptake of S-nitrosothiols is regulated by L-type amino acid transporter[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 295(1):L38-L43. doi:10.1152/ajplung.00280.2007.
|
[11] |
REZANO A, RIDHAYANTI F, RANGKUTI A R, et al. Cytotoxicity of simvastatin in human breast cancer MCF-7 and MDA-MB-231 cell lines[J]. Asian Pac J Cancer Prev, 2021, 22(S1):33-42. doi:10.31557/APJCP.2021.22.S1.33.
|
[12] |
KORANGATH P, TEO W W, SADIK H, et al. Targeting glutamine metabolism in breast cancer with aminooxyacetate[J]. Clin Cancer Res, 2015, 21(14):3263-3273. doi:10.1158/1078-0432.CCR-14-1200.
|
[13] |
NAN J, ZHANG S, ZHAN P, et al. Discovery of novel GMPS inhibitors of candidatus liberibacter asiaticus by structure based design and enzyme kinetic[J]. Biology(Basel), 2021, 10(7):594. doi:10.3390/biology10070594.
|
[14] |
GHOSH S, ERZURUM S C. Nitric oxide metabolism in asthma pathophysiology[J]. Biochim Biophys Acta, 2011, 1810(11):1008-1016. doi:10.1016/j.bbagen.2011.06.009.
|
[15] |
BATHAIE S Z, ASHRAFI M, AZIZIAN M, et al. Mevalonate pathway and human cancers[J]. Curr Mol Pharmacol, 2017, 10(2):77-85. doi:10.2174/1874467209666160112123205.
|
[16] |
LU X Y, SHI X J, HU A, et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis[J]. Nature, 2020, 588(7838):479-484. doi:10.1038/s41586-020-2928-y.
|
[17] |
YANG R Z, BLAILEANU G, HANSEN B C, et al. cDNA cloning,genomic structure,chromosomal mapping,and functional expression of a novel human alanine aminotransferase[J]. Genomics, 2002, 79(3):445-450. doi:10.1006/geno.2002.6722.
|
[18] |
WANG Q, GUAN Y F, HANCOCK S E, et al. Inhibition of guanosine monophosphate synthetase (GMPS) blocks glutamine metabolism and prostate cancer growth[J]. J Pathol, 2021, 254(2):135-146. doi:10.1002/path.5665.
|
[19] |
WANG B, RONG X, PALLADINO E N D, et al. Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis[J]. Cell Stem Cell, 2018, 22(2):206-220.e4. doi:10.1016/j.stem.2017.12.017.
|
[20] |
ZHANG B, CHEN Y, BAO L, et al. GPT2 is induced by hypoxia-inducible factor (HIF)-2 and promotes glioblastoma growth[J]. Cells, 2022, 11(16):2597. doi:10.3390/cells11162597.
|
[21] |
CHEN W, DAI G, QIAN Y, et al. PIK3CA mutation affects the proliferation of colorectal cancer cells through the PI3K-MEK/PDK1-GPT2 pathway[J]. Oncol Rep, 2022, 47(1):11. doi:10.3892/or.2021.8222.
|
[22] |
GON Y, HASHIMOTO S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma[J]. Allergol Int, 2018, 67(1):12-17. doi:10.1016/j.alit.2017.08.011.
|
[23] |
SATO S, SAITO J, FUKUHARA A, et al. The clinical role of fractional exhaled nitric oxide in asthma control[J]. Ann Allergy Asthma Immunol, 2017, 119(6):541-547. doi:10.1016/j.anai.2017.09.059.
|
[24] |
AGUILERA-AGUIRRE L, BACSI A, SAAVEDRA-MOLINA A, et al. Mitochondrial dysfunction increases allergic airway inflammation[J]. J Immunol, 2009, 183(8):5379-5387. doi:10.4049/jimmunol.0900228.
|
[25] |
KLIMENT C R, NGUYEN J M K, KALTREIDER M J, et al. Adenine nucleotide translocase regulates airway epithelial metabolism,surface hydration and ciliary function[J]. J Cell Sci, 2021, 134(4):jcs257162. doi:10.1242/jcs.257162.
|
[26] |
PEI R, FENG J, ZHANG Y, et al. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection[J]. Protein Cell, 2021, 12(9):717-733. doi:10.1007/s13238-020-00811-w.
|