[1] |
BASSI G L, FERRER M, MARTI J D, et al. Ventilator-associated pneumonia[J]. Semin Respir Crit Care Med, 2014, 35(4):469-481. doi:10.1055/s-0034-1384752.
|
[2] |
MODI A R, KOVACS C S. Hospital-acquired and ventilator-associated pneumonia:Diagnosis,management,and prevention[J]. Cleve Clin J Med, 2020, 87(10):633-639. doi:10.3949/ccjm.87a.19117.
|
[3] |
BOYD S, SHENG LOH K, LYNCH J, et al. Elevated rates of ventilator-associated pneumonia and COVID-19 associated pulmonary aspergillosis in critically ill patients with SARS-CoV2 infection in the second wave:a retrospective chart review[J]. Antibiotics (Basel), 2022, 11(5):632. doi:10.3390/antibiotics11050632.
|
[4] |
PULIDO L, BURGOS D, GARCIA MORATO J, et al. Does animal model on ventilator-associated pneumonia reflect physiopathology of sepsis mechanisms in humans?[J]. Ann Transl Med, 2017, 5(22):452. doi:10.21037/atm.2017.11.35.
|
[5] |
GORLINGER K, DIRKMANN D, GANDHI A, et al. COVID-19-associated coagulopathy and inflammatory response:What do we know already and what are the knowledge caps?[J]. Anesth Analg, 2020, 131(5):1324-1333. doi:10.1213/ANE.0000000000005147.
|
[6] |
CHEN R, KANG R, TANG D. The mechanism of HMGB1 secretion and release[J]. Exp Mol Med, 2022, 54(2):91-102. doi:10.1038/s12276-022-00736-w.
|
[7] |
WANG S, ZHANG Y. HMGB1 in inflammation and cancer[J]. J Hematol Oncol, 2020, 13(1):116. doi:10.1186/s13045-020-00950-x.
|
[8] |
GAUTHIER A G, LIN M, ZEFI S, et al. GAT107-mediated α7 nicotinic acetylcholine receptor signaling attenuates inflammatory lung injury and mortality in a mouse model of ventilator-associated pneumonia by alleviating macrophage mitochondrial oxidative stress via reducing MnSOD-S-glutathionylation[J]. Redox Biol, 2023, 60:102614. doi:10.1016/j.redox.2023.102614.
|
[9] |
PATEL V S, SITAPARA R A, GORE A, et al. High mobility group box-1 mediates hyperoxia-induced impairment of pseudomonas aeruginosa clearance and inflammatory lung injury in mice[J]. Am J Respir Cell Mol Biol, 2013, 48(3):280-287. doi:10.1165/rcmb.2012-0279OC.
|
[10] |
严一核, 孙雪东, 张亦婷, 等. HMGB1/TLR4信号通路在大鼠呼吸机相关性肺炎中的作用[J]. 中华医院感染学杂志, 2021, 31(6):811-815.
|
|
YAN Y H, SUN X D, ZHANG Y T, et al. Role of HMGB1/TLR4 signaling pathway on ventilator associated pneumonia in rats[J]. Chinese Journal of Nosocomiology, 2021, 31(6):811-815. doi:10.11816/cn.ni.2021-201667.
|
[11] |
DING N, WANG F, XIAO H, et al. Mechanical ventilation enhances HMGB1 expression in an LPS-induced lung injury model[J]. PLoS One, 2013, 8(9):e74633. doi:10.1371/journal.pone.0074633.
|
[12] |
VAN ZOELEN M A, ISHIZAKA A, WOLTHULS E K, et al. Pulmonary levels of high-mobility group box 1 during mechanical ventilation and ventilator-associated pneumonia[J]. Shock, 2008, 29(4):441-445. doi:10.1097/SHK.0b013e318157eddd.
|
[13] |
DONG L, LI L. Diagnostic and prognostic value of HMGB1 for late-onset ventilator associated pneumonia[J]. Critical Care Medicine, 2019, 47(1):271. doi:10.1097/01.ccm.0000551333.69956.e4.
|
[14] |
孙雪东, 严一核, 褚韦韦, 等. 高迁移率族蛋白B1和肺泡巨噬细胞活性对呼吸机相关性肺炎患者短期内撤机拔管的影响[J]. 中华急诊医学杂志, 2020, 29(11):1466-1470.
|
|
SUN X D, YAN Y H, CHU W W, et al. Effects of high mobility group protein B1 and alveolar macrophage activity on short-term extubation in patients with ventilator-associated pneumonia[J]. Chinese Journal of Emergency Medicine, 2020, 29(11):1466-1470. doi:10.3760/cma.j.issn.1671-0282.2020.11.015.
|
[15] |
高秀莲, 贾克鹏, 张玉清. 呼吸机相关性肺炎患者病原菌分布及血清HMGB1、PCT、CGRP水平变化的临床评价[J]. 中国微生态学杂志, 2022, 34(8):939-943.
|
|
GAO X L, JIA K P, ZHANG Y Q. Clinical evaluation of pathogenic bacteria distribution and serum HMGB1,PCT and CGRP levels in patients with ventilator-associated pneumonia[J]. Chinese Journal of Microecology, 2022, 34(8):939-943. doi:10.13381/J.cnki.cjm.202208013.
|
[16] |
OCZYPOK E A, PERKINS T N, OURY T D. All the "RAGE" in lung disease:The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses[J]. Paediatr Respir Rev, 2017, 23:40-49. doi:10.1016/j.prrv.2017.03.012.
|
[17] |
HUDSON B I, LIPPMAN M E. Targeting RAGE signaling in inflammatory disease[J]. Annu Rev Med, 2018, 69:349-364. doi:10.1146/annurev-med-041316-085215.
|
[18] |
唐瑾, 张文, 徐小妹, 等. 血浆可溶性晚期糖基化终产物受体水平在危重患者呼吸机相关性肺炎预后中的意义[J]. 内科急危重症杂志, 2021, 27(2):121-124.
|
|
TANG J, ZHANG W, XU X M, et al. Significance of plasma soluble advanced glycation end-product receptor level in the prognosis of criticallyill patients with ventilator-associated pneumonia[J]. Journal of Acute Care Medicine, 2021, 27(2):121-124. doi:10.11768/nkjwzzzz20210208.
|
[19] |
张新月, 陈明茜, 白巧红, 等. 血浆sRAGE、Nampt水平与呼吸机相关性肺炎患者病情程度和预后的关系[J]. 山东医药, 2022, 62(25):6-10.
|
|
ZHANG X Y, CHEN M Q, BAI Q H, et al. Relationship between serum sRAGE,Nampt level and prognosis of patients with ventilator-associated pneumonia[J]. Shandong Medical Journal, 2022, 62(25):6-10. doi:10.3969/j.issn.1002-266X.2022.25.002.
|
[20] |
ACHOUITI A, VAN DER MEER A J, FLORQUIN S, et al. High-mobility group box 1 and the receptor for advanced glycation end products contribute to lung injury during Staphylococcus aureus pneumonia[J]. Crit Care, 2013, 17(6):R296. doi:10.1186/cc13162.
|
[21] |
ANTONELLI A, DI MAGGIO S, REJMAN J, et al. The shedding-derived soluble receptor for advanced glycation endproducts sustains inflammation during acute pseudomonas aeruginosa lung infection[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(2):354-364. doi:10.1016/j.bbagen.2016.11.040.
|
[22] |
ZHANG B F, SONG W, WANG J, et al. Anti-high-mobility group box-1 (HMGB1) mediates the apoptosis of alveolar epithelial cells (AEC) by receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway in the rats of crush injuries[J]. J Orthop Surg Res, 2022, 17(1):20. doi:10.1186/s13018-021-02903-7.
|
[23] |
ZHANG K, JIN Y, LAI D, et al. RAGE-induced ILC2 expansion in acute lung injury due to haemorrhagic shock[J]. Thorax, 2020, 75(3):209-219. doi:10.1136/thoraxjnl-2019-213613.
|
[24] |
LIN L, LI J, SONG Q, et al. The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke-induced inflammation in chronic obstructive pulmonary disease[J]. Immun Inflamm Dis, 2022, 10(11):e711. doi:10.1002/iid3.711.
|
[25] |
JIN S, DING X, YANG C, et al. Mechanical ventilation exacerbates poly (I:C) induced acute lung injury:central role for caspase-11 and gut-lung axis[J]. Front Immunol, 2021, 12:693874. doi:10.3389/fimmu.2021.693874.
|
[26] |
SHI J, XU H, CAVAGNARO M J, et al. Blocking HMGB1/RAGE signaling by berberine alleviates a1 astrocyte and attenuates sepsis-associated encephalopathy[J]. Front Pharmacol, 2021, 12:760186. doi:10.3389/fphar.2021.760186.
|
[27] |
PAUDEL Y N, ANGELOPOULOU E, SEMPLE B, et al. Potential neuroprotective effect of the HMGB1 inhibitor glycyrrhizin in neurological disorders[J]. ACS Chem Neurosci, 2020, 11(4):485-500. doi:10.1021/acschemneuro.9b00640.
|
[28] |
OKUMA Y, LIU K, WAKE H, et al. Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1-RAGE interaction[J]. Neuropharmacology, 2014, 85:18-26. doi:10.1016/j.neuropharm.2014.05.007.
|
[29] |
WANG J, XIN Y, CHU T, et al. Dexmedetomidine attenuates perioperative neurocognitive disorders by suppressing hippocampal neuroinflammation and HMGB1/RAGE/NF-κB signaling pathway[J]. Biomed Pharmacother, 2022, 150:113006. doi:10.1016/j.biopha.2022.113006.
|
[30] |
WANG Y, WANG C, ZHANG D, et al. Dexmedetomidine protects against traumatic brain injury-induced acute lung injury in mice[J]. Med Sci Monit, 2018, 24:4961-4967. doi:10.12659/MSM.908133.
|
[31] |
STEWART M, LIN M. Effects of GM-1111 on hyperoxia-impaired bacterial clearance and acute lung injury in ventilator-associated pneumonia[J]. Free Radic Biol Med, 2022, 180:s84. doi:10.1016/j.freeradbiomed.2021.12.196.
|
[32] |
WANG M, GORASIYA S, ANTOINE D J, et al. The compromise of macrophage functions by hyperoxia is attenuated by ethacrynic acid via inhibition of NF-κB-mediated release of high-mobility group box-1[J]. Am J Respir Cell Mol Biol, 2015, 52(2):171-182. doi:10.1165/rcmb.2013-0544OC.
|
[33] |
JESSOP F, SCHWARZ B, SCOTT D, et al. Impairing RAGE signaling promotes survival and limits disease pathogenesis following SARS-CoV-2 infection in mice[J]. JCI Insight, 2022, 7(2):e155896. doi:10.1172/jci.insight.155896.
|
[34] |
MOHAMMED EL TABAA M, MOHAMMED EL TABAA M, ANIS A, et al. GLP-1 mediates the neuroprotective action of crocin against cigarette smoking-induced cognitive disorders via suppressing HMGB1-RAGE/TLR4-NF-κB pathway[J]. Int Immunopharmacol, 2022, 110:108995. doi:10.1016/j.intimp.2022.108995.
|
[35] |
HAN Y, CHEN R, LIN Q, et al. Curcumin improves memory deficits by inhibiting HMGB1-RAGE/TLR4-NF-κB signalling pathway in APPswe/PS1dE9 transgenic mice hippocampus[J]. J Cell Mol Med, 2021, 25(18):8947-8956. doi:10.1111/jcmm.16855.
|
[36] |
LI K, YANG J, HAN X. Ketamine attenuates sepsis-induced acute lung injury via regulation of HMGB1-RAGE pathways[J]. Int Immunopharmacol, 2016, 34:114-128. doi:10.1016/j.intimp.2016.01.021.
|
[37] |
KIKUCHI K, TANCHAROEN S, ITO T, et al. Potential of the angiotensin receptor blockers (ARBs) telmisartan,irbesartan,and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke[J]. Int J Mol Sci, 2013, 14(9):18899-18924. doi:10.3390/ijms140918899.
|