天津医药 ›› 2024, Vol. 52 ›› Issue (4): 409-415.doi: 10.11958/20231100
王宁方(), 赵崇山, 刘方, 赵鹏浩, 张东东, 蔡卓纹, 蔡芳芳
收稿日期:
2023-07-19
修回日期:
2023-09-20
出版日期:
2024-04-15
发布日期:
2024-04-19
作者简介:
王宁方(1985),女,副主任医师,主要从事多发性骨髓瘤免疫微环境方面研究。E-mail:基金资助:
WANG Ningfang(), ZHAO Chongshan, LIU Fang, ZHAO Penghao, ZHANG Dongdong, CAI Zhuowen, CAI Fangfang
Received:
2023-07-19
Revised:
2023-09-20
Published:
2024-04-15
Online:
2024-04-19
王宁方, 赵崇山, 刘方, 赵鹏浩, 张东东, 蔡卓纹, 蔡芳芳. 多发性骨髓瘤患者淋巴细胞来源微泡的检测及其临床意义[J]. 天津医药, 2024, 52(4): 409-415.
WANG Ningfang, ZHAO Chongshan, LIU Fang, ZHAO Penghao, ZHANG Dongdong, CAI Zhuowen, CAI Fangfang. The detection and clinical significance of microparticles derived from lymphocytes in patients with multiple myeloma[J]. Tianjin Medical Journal, 2024, 52(4): 409-415.
摘要:
目的 探讨多发性骨髓瘤(MM)患者淋巴细胞来源微泡(LMP)的表达及其临床意义。方法 选取65例初诊MM患者(初诊组)及30例健康体检志愿者为对照组,初诊组经4疗程化疗后8例在3个月内死亡,余57例纳入化疗后组。流式细胞仪检测3组外周血LMP的表达及初诊组外周血淋巴细胞亚群及骨髓MM细胞免疫表型表达;比较化疗后不同疗效组间LMP;受试者工作特征(ROC)曲线确定各LMP预测死亡的截断值,LMP≥截断值为High(H)组,<截断值的为Low(L)组,进行Kaplan-Meier生存分析;将Kaplan-Meier分析中P<0.05的变量纳入Cox回归分析,分析患者死亡的影响因素;比较不同LMP组间淋巴细胞亚群及骨髓瘤细胞免疫表型差异。结果 初诊组LMP、CD3+LMP、CD3+CD8+LMP比例低于对照组,NKLMP比例、CD4+/CD8+LMP高于对照组(P<0.05)。化疗后组CD3+CD8+LMP比例高于初诊组,CD3+CD4+LMP比例、CD4+/CD8+LMP低于初诊组(P<0.05)。完全缓解(CR)+非常好的部分缓解(VGPR)组CD3+LMP、CD3+CD8+LMP比例高于部分缓解(PR)+微小缓解(MR)+疾病进展(PD)组(P<0.01),而NKLMP比例、CD4+/CD8+LMP则低于PR+MR+PD组(P<0.05)。Kaplan-Meier分析显示,LLMP组中位生存时间(OS)较HLMP组缩短(P<0.01);LNKTLMP组中位OS较HNKTLMP组缩短(P<0.05)。Cox回归分析显示LLMP、LNKTLMP是患者死亡的独立危险因素(HR分别为4.620、2.706,P<0.05)。LLMP组CD3+CD4+T比例、CD4+/CD8+T高于HLMP组(P<0.05)。LLMP组MM细胞CD117+比例高于HLMP组(P<0.05)。结论 MM患者存在LMP分泌紊乱,LMP、NKTLMP与MM预后密切相关,未来靶向调节LMP分泌或可延长生存,改善预后。
中图分类号:
组别 | n | LMP/% | CD3+LMP/% | CD3+CD4+LMP/% | CD3+CD8+LMP/% |
---|---|---|---|---|---|
对照组 | 30 | 7.20(6.98,8.10) | 76.90(72.20,79.13) | 35.71(33.68,39.59) | 25.39(22.62,32.18) |
初诊组 | 65 | 1.22(0.49,2.56) | 63.01(55.81,73.38) | 36.28(27.91,39.51) | 21.42(13.35,27.52) |
Z | 7.346** | 4.864** | 0.865 | 3.047** | |
组别 | CD4+/CD8+LMP | NKLMP/% | NKTLMP/% | BLMP/% | |
对照组 | 1.28(1.23,1.56) | 12.19(9.16,18.03) | 8.42(7.16,10.22) | 9.96(9.06,10.66) | |
初诊组 | 1.63(1.12,2.31) | 21.32(15.18,28.67) | 9.76(5.73,14.78) | 6.35(3.52,11.78) | |
Z | 2.042* | 4.472** | 1.173 | 1.934 |
表1 对照组和初诊组LMP比较 [M(P25,P75)]
Tab.1 Comparison of LMP between the control group and the newly diagnosed group
组别 | n | LMP/% | CD3+LMP/% | CD3+CD4+LMP/% | CD3+CD8+LMP/% |
---|---|---|---|---|---|
对照组 | 30 | 7.20(6.98,8.10) | 76.90(72.20,79.13) | 35.71(33.68,39.59) | 25.39(22.62,32.18) |
初诊组 | 65 | 1.22(0.49,2.56) | 63.01(55.81,73.38) | 36.28(27.91,39.51) | 21.42(13.35,27.52) |
Z | 7.346** | 4.864** | 0.865 | 3.047** | |
组别 | CD4+/CD8+LMP | NKLMP/% | NKTLMP/% | BLMP/% | |
对照组 | 1.28(1.23,1.56) | 12.19(9.16,18.03) | 8.42(7.16,10.22) | 9.96(9.06,10.66) | |
初诊组 | 1.63(1.12,2.31) | 21.32(15.18,28.67) | 9.76(5.73,14.78) | 6.35(3.52,11.78) | |
Z | 2.042* | 4.472** | 1.173 | 1.934 |
组别 | n | LMP/% | CD3+LMP/% | CD3+CD4+LMP/% | CD3+CD8+LMP/% |
---|---|---|---|---|---|
初诊组 | 65 | 1.22(0.49,2.56) | 63.01(55.81,73.38) | 36.28(27.91,39.51) | 21.42(13.35,27.52) |
化疗后组 | 57 | 1.10(0.28,2.86) | 68.67(53.23,79.91) | 30.56(23.20,34.25) | 28.00(18.61,34.29) |
Z | 0.338 | 1.208 | 2.497* | 2.540* | |
组别 | CD4+/CD8+LM | NKLMP/% | NKTLMP/% | BLMP/% | |
初诊组 | 1.63(1.12,2.31) | 21.32(15.18,28.67) | 9.76(5.73,14.78) | 6.35(3.52,11.78) | |
化疗后组 | 0.99(0.93,1.33) | 16.75(10.52,28.85) | 9.39(4.88,13.07) | 11.13(3.32,18.60) | |
Z | 3.677** | 1.950 | 0.834 | 1.634 |
表2 初诊组和化疗后组间LMP比较 [M(P25,P75)]
Tab.2 Comparison of LMP between the newly diagnosed group and the post chemotherapy group
组别 | n | LMP/% | CD3+LMP/% | CD3+CD4+LMP/% | CD3+CD8+LMP/% |
---|---|---|---|---|---|
初诊组 | 65 | 1.22(0.49,2.56) | 63.01(55.81,73.38) | 36.28(27.91,39.51) | 21.42(13.35,27.52) |
化疗后组 | 57 | 1.10(0.28,2.86) | 68.67(53.23,79.91) | 30.56(23.20,34.25) | 28.00(18.61,34.29) |
Z | 0.338 | 1.208 | 2.497* | 2.540* | |
组别 | CD4+/CD8+LM | NKLMP/% | NKTLMP/% | BLMP/% | |
初诊组 | 1.63(1.12,2.31) | 21.32(15.18,28.67) | 9.76(5.73,14.78) | 6.35(3.52,11.78) | |
化疗后组 | 0.99(0.93,1.33) | 16.75(10.52,28.85) | 9.39(4.88,13.07) | 11.13(3.32,18.60) | |
Z | 3.677** | 1.950 | 0.834 | 1.634 |
组别 | n | LMP/% | CD3+LMP/% | CD3+CD4+LMP/% | CD3+CD8+LMP/% |
---|---|---|---|---|---|
CR+VGPR组 | 31 | 1.25(0.31,3.77) | 72.58(66.54,81.79) | 31.89(26.58,35.53) | 33.15(26.33,37.03) |
PR+MR+PD组 | 26 | 0.93(0.08,1.85) | 56.12(46.31,76.69) | 27.38(21.71,32.11) | 20.66(12.61,30.90) |
Z | 1.626 | 2.948** | 1.738 | 3.020** | |
组别 | CD4+/CD8+LMP | NKLMP/% | NKTLMP/% | BLMP/% | |
CR+VGPR组 | 0.97(0.92,1.02) | 15.61(8.86,19.17) | 9.84(5.96,13.08) | 9.71(3.43,15.59) | |
PR+MR+PD组 | 1.23(0.96,1.51) | 23.01(12.66,33.75) | 7.44(4.42,12.71) | 13.36(3.21,22.32) | |
Z | 2.275* | 2.243* | 0.713 | 1.330 |
表3 不同疗效组间LMP比较 [M(P25,P75)]
Tab.3 Comparison of LMP between different therapeutic groups
组别 | n | LMP/% | CD3+LMP/% | CD3+CD4+LMP/% | CD3+CD8+LMP/% |
---|---|---|---|---|---|
CR+VGPR组 | 31 | 1.25(0.31,3.77) | 72.58(66.54,81.79) | 31.89(26.58,35.53) | 33.15(26.33,37.03) |
PR+MR+PD组 | 26 | 0.93(0.08,1.85) | 56.12(46.31,76.69) | 27.38(21.71,32.11) | 20.66(12.61,30.90) |
Z | 1.626 | 2.948** | 1.738 | 3.020** | |
组别 | CD4+/CD8+LMP | NKLMP/% | NKTLMP/% | BLMP/% | |
CR+VGPR组 | 0.97(0.92,1.02) | 15.61(8.86,19.17) | 9.84(5.96,13.08) | 9.71(3.43,15.59) | |
PR+MR+PD组 | 1.23(0.96,1.51) | 23.01(12.66,33.75) | 7.44(4.42,12.71) | 13.36(3.21,22.32) | |
Z | 2.275* | 2.243* | 0.713 | 1.330 |
指标 | AUC(95%CI) | 敏感 度 | 特异 度 | P | 截断值 |
---|---|---|---|---|---|
LMP | 0.653(0.520~0.785) | 0.368 | 0.926 | 0.037 | 2.56% |
CD3+LMP | 0.392(0.251~0.532) | 0.296 | 0.500 | 0.140 | 66.02% |
CD3+CD4+LMP | 0.458(0.316~0.599) | 0.741 | 0.447 | 0.563 | 32.89% |
CD3+CD8+LMP | 0.398(0.253~0.543) | 0.519 | 0.211 | 0.164 | 17.46% |
CD4+/CD8+LMP | 0.579(0.437~0.733) | 0.481 | 0.684 | 0.278 | 1.96 |
NKLMP | 0.631(0.490~0.772) | 0.556 | 0.789 | 0.073 | 26.18% |
NKTLMP | 0.646(0.512~0.781) | 0.500 | 0.815 | 0.046 | 10.98% |
BLMP | 0.577(0.435~0.719) | 0.526 | 0.741 | 0.293 | 9.13% |
表4 LMP预测死亡的ROC曲线分析
Tab.4 ROC curve analysis of LMP to predict death
指标 | AUC(95%CI) | 敏感 度 | 特异 度 | P | 截断值 |
---|---|---|---|---|---|
LMP | 0.653(0.520~0.785) | 0.368 | 0.926 | 0.037 | 2.56% |
CD3+LMP | 0.392(0.251~0.532) | 0.296 | 0.500 | 0.140 | 66.02% |
CD3+CD4+LMP | 0.458(0.316~0.599) | 0.741 | 0.447 | 0.563 | 32.89% |
CD3+CD8+LMP | 0.398(0.253~0.543) | 0.519 | 0.211 | 0.164 | 17.46% |
CD4+/CD8+LMP | 0.579(0.437~0.733) | 0.481 | 0.684 | 0.278 | 1.96 |
NKLMP | 0.631(0.490~0.772) | 0.556 | 0.789 | 0.073 | 26.18% |
NKTLMP | 0.646(0.512~0.781) | 0.500 | 0.815 | 0.046 | 10.98% |
BLMP | 0.577(0.435~0.719) | 0.526 | 0.741 | 0.293 | 9.13% |
分组 | n | OS 95%CI /月 | χ2 | P |
---|---|---|---|---|
LMP | ||||
LLMP | 48 | 19(12~26) | 8.402 | 0.004 |
HLMP | 17 | 未达到 | ||
NKTLMP | ||||
LNKTLMP | 40 | 22(17~27) | 6.332 | 0.012 |
HNKTLMP | 25 | 未达到 |
表5 不同LMP组间MM患者生存分析
Tab.5 Survival analysis of MM patients between different LMP groups
分组 | n | OS 95%CI /月 | χ2 | P |
---|---|---|---|---|
LMP | ||||
LLMP | 48 | 19(12~26) | 8.402 | 0.004 |
HLMP | 17 | 未达到 | ||
NKTLMP | ||||
LNKTLMP | 40 | 22(17~27) | 6.332 | 0.012 |
HNKTLMP | 25 | 未达到 |
变量 | β | SE | Wald χ2 | P | HR(95%CI) |
---|---|---|---|---|---|
LMP | 1.530 | 0.630 | 5.901 | 0.015 | 4.620(1.344~15.883) |
NKTLMP | 0.995 | 0.477 | 4.358 | 0.037 | 2.706(1.063~6.889) |
表6 MM患者Cox回归分析
Tab.6 Cox regression analysis of MM patients
变量 | β | SE | Wald χ2 | P | HR(95%CI) |
---|---|---|---|---|---|
LMP | 1.530 | 0.630 | 5.901 | 0.015 | 4.620(1.344~15.883) |
NKTLMP | 0.995 | 0.477 | 4.358 | 0.037 | 2.706(1.063~6.889) |
组别 | n | L/% | CD3+T/% | CD3+CD4+T/% | CD3+CD8+T/% | CD4+/CD8+T | NK/% | B/% |
---|---|---|---|---|---|---|---|---|
LLMP组 | 48 | 30.82±15.13 | 71.73±9.37 | 39.94±9.41 | 27.65±6.48 | 1.60±0.64 | 15.00(10.00,19.00) | 9.00(5.00,10.50) |
HLMP组 | 17 | 34.63±10.93 | 68.33±9.45 | 32.96±8.21 | 31.13±6.97 | 1.15±0.45 | 20.00(14.00,32.00) | 7.00(4.50,19.00) |
t | 0.905 | 1.230 | 2.587* | 1.793 | 2.504* | 1.938 | 0.995 |
表7 2组外周血淋巴亚群比较
Tab.7 Comparison of peripheral blood lymphoid subsets between two groups
组别 | n | L/% | CD3+T/% | CD3+CD4+T/% | CD3+CD8+T/% | CD4+/CD8+T | NK/% | B/% |
---|---|---|---|---|---|---|---|---|
LLMP组 | 48 | 30.82±15.13 | 71.73±9.37 | 39.94±9.41 | 27.65±6.48 | 1.60±0.64 | 15.00(10.00,19.00) | 9.00(5.00,10.50) |
HLMP组 | 17 | 34.63±10.93 | 68.33±9.45 | 32.96±8.21 | 31.13±6.97 | 1.15±0.45 | 20.00(14.00,32.00) | 7.00(4.50,19.00) |
t | 0.905 | 1.230 | 2.587* | 1.793 | 2.504* | 1.938 | 0.995 |
组别 | n | CD38 | CD27 | CD45 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+ | - | + | - | + | - | ||||||||||
LLMP组 | 48 | 47(97.9) | 1(2.1) | 34(70.8) | 14(29.2) | 19(39.6) | 29(60.4) | ||||||||
HLMP组 | 17 | 17(100.0) | 0(0.0) | 12(70.6) | 5(29.4) | 6(35.3) | 11(64.7) | ||||||||
χ2 | 0.360 | 0.000 | 0.000 | 0.098 | |||||||||||
组别 | CD81 | CD56 | CD200 | CD117 | |||||||||||
+ | - | + | - | + | - | + | - | ||||||||
LLMP组 | 21(43.7) | 27(56.3) | 22(45.8) | 26(54.2) | 29(60.4) | 19(39.6) | 26(53.1) | 23(46.9) | |||||||
HLMP组 | 8(47.1) | 9(52.9) | 9(60.0) | 6(40.0) | 11(64.7) | 6(35.3) | 4(23.5) | 13(76.5) | |||||||
χ2 | 0.056 | 0.254 | 0.098 | 4.741* |
表8 2组MM细胞免疫表型比较 [例(%)]
Tab.8 Comparison of immunophenotypes of MM cells between two groups
组别 | n | CD38 | CD27 | CD45 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+ | - | + | - | + | - | ||||||||||
LLMP组 | 48 | 47(97.9) | 1(2.1) | 34(70.8) | 14(29.2) | 19(39.6) | 29(60.4) | ||||||||
HLMP组 | 17 | 17(100.0) | 0(0.0) | 12(70.6) | 5(29.4) | 6(35.3) | 11(64.7) | ||||||||
χ2 | 0.360 | 0.000 | 0.000 | 0.098 | |||||||||||
组别 | CD81 | CD56 | CD200 | CD117 | |||||||||||
+ | - | + | - | + | - | + | - | ||||||||
LLMP组 | 21(43.7) | 27(56.3) | 22(45.8) | 26(54.2) | 29(60.4) | 19(39.6) | 26(53.1) | 23(46.9) | |||||||
HLMP组 | 8(47.1) | 9(52.9) | 9(60.0) | 6(40.0) | 11(64.7) | 6(35.3) | 4(23.5) | 13(76.5) | |||||||
χ2 | 0.056 | 0.254 | 0.098 | 4.741* |
[1] | LI X, WANG Q. Platelet-derived mmicroparticles and autoimmune diseases[J]. Int J Mol Sci, 2023, 24(12):10275. doi:10.3390/ijms241210275. |
[2] | MARKI A, LEY K. The expanding family of neutrophil-derived extracellular vesicles[J]. Immunol Rev, 2022, 312(1):52-60. doi:10.1111/imr.13103. |
[3] | KASSASSIR H, PAPIEWSKA-PAJĄK I, KRYCZKA J, et al. Platelet-derived microparticles stimulate the invasiveness of colorectal cancer cells via the p38MAPK-MMP-2/MMP-9 axis[J]. Cell Commun Signal, 2023, 21(1):51. doi:10.1186/s12964-023-01066-8. |
[4] | LIN Z, WU Y, XU Y, et al. Mesenchymal stem cell-derived exosomes in cancer therapy resistance:recent advances and therapeutic potential[J]. Mol Cancer, 2022, 21(1):179. doi:10.1186/s12943-022-01650-5. |
[5] | WHITESID T L. Immunosuppressive functions of melanoma cell-derived exosomes in plasma of melanoma patients[J]. Front Cell Dev Biol, 2023, 10:1080925. doi:10.3389/fcell.2022.1080925. |
[6] | YE Q, LI Z, LI Y, et al. Exosome-derived microRNA:implications in melanoma progression,diagnosis and treatment[J]. Cancers(Basel), 2022, 15(1):80. doi:10.3390/cancers15010080. |
[7] | ALLEGRA A, DI GIOACCHINO M, TONACCI A, et al. Multiple myeloma cell-derived exosomes:Implications on tumorigenesis,diagnosis,prognosis and therapeutic strategies[J]. Cells, 2021, 10(11):2865. doi:10.3390/cells10112865. |
[8] | ALIPOOR S D, CHANG H. Exosomal miRNAs in the tumor microenvironment of multiple myeloma[J]. Cells, 2023, 12(7):1030. doi:10.3390/cells12071030. |
[9] | MIZUHARA K, SHIMURA Y, TSUKAMOTO T, et al. Tumour-derived exosomes promote the induction of monocytic myeloid-derived suppressor cells from peripheral blood mononuclear cells by delivering miR-106a-5p and miR-146a-5p in multiple myeloma[J]. Br J Haematol, 2023, 203(3):426-438. doi:10.1111/bjh.19049. |
[10] | 中国医师协会血液科医师分会, 中华医学会血液学分会, 中国医师协会多发性骨髓瘤专业委员会. 中国多发性骨髓瘤诊治指南(2017年修订)[J]. 中华内科杂志, 2017, 56(11):866-870. |
Chinese Hematology Association, Chinese Society of Hematology, Chinese Myeloma Committee-Chinese Hematology Association. The guidelines for the diagnosis and management of multiple myeloma in China(2017 revision)[J]. Chinese Journal of Internal Medicine, 2017, 56(11):866-870. doi:10.3760/cma.j.issn.0578-1426.2017.11.021. | |
[11] | SHI Q, JI T, TANG X, et al. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis[J]. Cell Oncol(Dordr), 2023, 46(3):521-532. doi:10.1007/s13402-023-00773-1. |
[12] | LOPEZ K, LAI S W T, LOPE GONZALEZ E J, et al. Extracellular vesicles:a dive into their role in the tumor microenvironment and cancer progression[J]. Front Cell Dev Biol, 2023, 11:1154576. doi:10.3389/fcell.2023.1154576. |
[13] | KOTELEVETS L, CHASTRE E. Extracellular vesicles in colorectal cancer:from tumor growth and metastasis to biomarkers and nanomedications[J]. Cancers(Basel), 2023, 15(4):1107. doi:10.3390/cancers15041107. |
[14] | KHALIFE J, SANCHEZ J F, PICHIORRI F. Extracellular vesicles in hematological malignancies:from biomarkers to therapeutic tools[J]. Diagnostics(Basel), 2020, 10(12):1065. doi:10.3390/diagnostics10121065. |
[15] | PANDO A, SCHORL C, FAST L D, et al. Tumor derived extracellular vesicles modulate gene expression in T cells[J]. Gene, 2023, 850:146920. doi:10.1016/j.gene.2022.146920. |
[16] | SHAO Q, DENG L, LIU H, et al. Involvement of MM cell-derived exosomes in T lymphocytes immune responses[J]. Oncol Lett, 2020, 20(4):31. doi:10.3892/ol.2020.11892. |
[17] | CLAYTON A, MITCHELL J P, COURT J, et al. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2[J]. Cancer Res, 2007, 67(15):7458-7466. doi:10.1158/0008-5472.CAN-06-3456. |
[18] | WANG J, DE VEIRMAN K, DE BEULE N, et al. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells[J]. Oncotarget, 2015, 6(41):43992-44004. doi:10.18632/oncotarget.6083. |
[19] | WANG J, DE VEIRMAN K, FAICT S, et al. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression[J]. J Pathol, 2016, 239(2):162-173. doi:10.1002/path.4712. |
[20] | 熊文杰, 刘焕勋, 史敦云, 等. 骨髓瘤细胞来源外泌体对NK细胞表面活化受体的影响[J]. 中国实验血液学杂志, 2017, 25(6):1713-1717. |
XIONG W J, LIU H X, SHI D Y, et al. Effect of myeloma-derived exosomes on surface activating receptors of NK cells[J]. Journal of Experimental Hematology, 2017, 25(6):1713-1717. doi:10.7534/j.issn.1009-2137.2017.06.024. | |
[21] | GODFREY J, BENSON DM J R. The role of natural killer cells in immunity against multiple myeloma[J]. Leuk Lymphoma, 2012, 53(9):1666-1676. doi:10.3109/10428194.2012.676175. |
[22] | ZINGONI A, CECERE F, VULPIS E, et al. Genotoxic stress induces senescence-associated ADAM10-dependent release of NKG2D MIC ligands in multiple myeloma cells[J]. J Immunol, 2015, 195(2):736-748. doi:10.4049/jimmunol.1402643. |
[23] | CHILLEMI A, QUARONA V, ANTONIOLI L, et al. Roles and modalities of ectonucleotidases in remodeling the multiple myeloma niche[J]. Front Immunol, 2017, 8:305. doi:10.3389/fimmu.2017.00305. |
[24] | SHRIVASTAVA T, VAN RHEE F, AL HADIDI S. Targeting B cell maturation antigen in patients with multiple myeloma:current perspectives[J]. Onco Targets Ther, 2023, 16:441-464. doi:10.2147/OTT.S370880. |
[25] | JAKUBIKOVA J, CHOLUJOVA D, BEKE G, et al. Heterogeneity of B cell lymphopoiesis in patients with premalignant and active myeloma[J]. JCI Insight, 2023, 8(3):e159924. doi:10.1172/jci.insight.159924. |
[26] | HAABETH O A W, HENNIG K, FAUSKANGER M, et al. CD4+T-cell killing of multiple myeloma cells is mediated by resident bone marrow macrophages[J]. Blood Adv, 2020, 4(12):2595-2605. doi:10.1182/bloodadvances.2020001434. |
[27] | FENG P, YAN R, DAI X, et al. The alteration and clinical significance of Th1/Th2/Th17/Treg cells in patients with multiple myeloma[J]. Inflammation, 2015, 38(2):705-709. doi:10.1007/s10753-014-9980-4. |
[28] | 邹靖云, 刘月, 曹阳, 等. 多发性骨髓瘤CD4/CD8比值和中性粒细胞与淋巴细胞比值的临床意义[J]. 白血病·淋巴瘤, 2020, 29(4):219-224. |
ZOU J Y, LIU Y, CAO Y, et al. Clinical significances of CD4/CD8 ratio and neutrophil-to-lymphocyte ratio in patients with multiple myeloma[J]. Journal of Leukemia and Lymphoma, 2020, 29(4):219-224. doi:10.3760/cma.j.cn115356-20190215-00031. | |
[29] | 严志民, 刘彦权, 黄走方, 等. T细胞亚群与细胞因子水平变化在多发性骨髓瘤患者临床诊疗及预后评估中的价值[J]. 中国实验血液学杂志, 2022, 30(6):1791-1796. |
YAN Z M, LIU Y Q, HUAN Z F, et al. The value of T cell subsets and cytokine levels changes in the clinical diagnosis,treatment and prognosis evaluation of multiple myeloma[J]. Journal of Experimental Hematology, 2022, 30(6):1791-1796. doi:10.19746/j.cnki.issn.1009-2137.2022.06.025. | |
[30] | FRUMENTO G, ZUO J, VERMA K, et al. CD117(c-Kit)is expressed during CD8+ T cell priming and stratifies sensitivity to apoptosis according to strength of TCR engagement[J]. Front Immunol, 2019, 10:468. doi:10.3389/fimmu.2019.00468. |
[31] | DINH H Q, EGGERT T, MEYER M A, et al. Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow[J]. Immunity, 2020, 53(2):319-334.e6. doi:10.1016/j.immuni.2020.07.017. |
[32] | AWASTHI N P, MISHRA S, GUPTA G, et al. Immunophenotypic characterization of normal and abnormal plasma cells in bone marrow of newly diagnosed multiple myeloma patients[J]. Indian J Pathol Microbiol, 2023, 66(2):295-300. doi:10.4103/ijpm.ijpm_505_21. |
[1] | 杨敏, 潘艳莎, 张长玲, 陈红英, 郭渠莲, 刘文君. 儿童急性淋巴细胞白血病基线数据及早期治疗反应与预后的相关性[J]. 天津医药, 2024, 52(9): 954-958. |
[2] | 王新波, 罗冰清, 石玉宝, 张也, 席江伟. 结直肠癌组织LncRNA LINC00342和miR-203a-3p表达及与预后的关系[J]. 天津医药, 2024, 52(9): 971-976. |
[3] | 方杰, 黄芮, 郑红慧, 贾倩倩, 鲍静. miR-9-5p靶向TIMP2诱导多发性骨髓瘤细胞自噬和凋亡的机制[J]. 天津医药, 2024, 52(8): 785-790. |
[4] | 戴瑶, 方向, 黄康, 冯洁, 刘敏, 伍松柏. HAT疗法治疗脓毒症休克的临床疗效观察[J]. 天津医药, 2024, 52(8): 825-829. |
[5] | 张锡友, 郭一丹, 张春霞, 周晓玲, 贾萌, 石志华, 罗洋. 老年维持性血液透析患者高钾血症与不良预后事件相关性的临床研究[J]. 天津医药, 2024, 52(8): 840-844. |
[6] | 满祎, 许娅, 何先成, 宋少锋, 刘爱国. 三阴性乳腺癌EGFR、Ki-67、P53及CTC表达与预后的关系研究[J]. 天津医药, 2024, 52(8): 862-867. |
[7] | 历丽, 曹树明, 杨仲平, 胡若梅. 鱼胶原低聚肽对急诊复杂手外伤手术患者预后的影响[J]. 天津医药, 2024, 52(8): 868-871. |
[8] | 罗宴冉, 史晓飞, 韩磊, 张贝, 文路遥. 皮肌炎自身抗体在间质性肺病中的研究进展[J]. 天津医药, 2024, 52(7): 704-708. |
[9] | 薛晶, 元小冬, 邢爱君, 王连辉, 马倩, 符永山, 张萍淑. 急性缺血性脑卒中患者睡眠-觉醒生物节律变化与预后的关系研究[J]. 天津医药, 2024, 52(6): 614-619. |
[10] | 叶朝阳, 马建中, 李后俊, 魏鲲鹏. 急性胰腺炎患者外周血TLR4、IL-1β、NLR水平与疾病进展和预后的关系[J]. 天津医药, 2024, 52(6): 648-652. |
[11] | 吕梦娜, 李建斌, 吴锐. 自身炎症性疾病患者合并COVID-19严重程度的早期预测指标探讨[J]. 天津医药, 2024, 52(5): 528-531. |
[12] | 吴纪昆, 徐榕笛, 许景涵, 王乐, 丛洪良. 6种常见模型评分对NSTEMI患者远期预后预测价值的验证和比较[J]. 天津医药, 2024, 52(5): 541-547. |
[13] | 张文超, 杨雪辉, 尹涛, 王睿健, 张盟盟. 自发性急性脑出血患者血浆sCD163/sTWEAK比值与预后的关系[J]. 天津医药, 2024, 52(3): 297-301. |
[14] | 丁波, 龚洁芹, 沈李奎. 急性缺血性脑卒中患者血清指标与病情和预后的关系[J]. 天津医药, 2024, 52(2): 172-176. |
[15] | 许文静, 高冬梅, 李慧心, 王莉, 佟胜全. 类风湿关节炎患者血清脂肪因子趋化素与疾病活动度和Th17/Treg的关系[J]. 天津医药, 2024, 52(2): 193-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||