[1] |
BUCKSTEIN R, CHODIRKER L, YEEK W L, et al. The burden of red blood cell transfusions in patients with lower-risk myelodysplastic syndromes and ring sideroblasts:an analysis of the prospective MDS-CAN registry[J]. Leuk Lymphoma, 2023, 64(3):651-661. doi:10.1080/10428194.2022.2156793.
|
[2] |
VEGIVINTI C T R, KEESARI P R, VEERABALLI S, et al. Role of innate immunological/inflammatory pathways in myelodysplastic syndromes and AML:a narrative review[J]. Exp Hematol Oncol, 2023, 12(1):1-12. doi:10.1186/s40164-023-00422-1.
|
[3] |
PELLAGATTI A, BOULTWOOD J. Splicing factor mutations in the myelodysplastic syndromes:role of key aberrantly spliced genes in disease pathophysiology and treatment[J]. Adv Biol Regul, 2023,87:100920. doi:10.1016/j.jbior.2022.100920.
|
[4] |
FENG Y, LIANG H, LUO X, et al. Analysis of core mutation and TET2/ASXL1 mutations DNA methylation profile in myelodysplastic syndrome[J]. Hematology, 2023, 28(1):2220222. doi:10.1080/16078454.2023.2220222.
|
[5] |
FATTIZZO B, VERSINO F, BORTOLOTTI M, et al. Luspatercept in combination with recombinant erythropoietin in patients with myelodysplastic syndrome with ring sideroblasts:stimulating early and late-stage erythropoiesis[J]. Eur J Haematol, 2023, 110(5):571-574. doi:10.1111/ejh.13933.
|
[6] |
TIE Y, TANG F, PENG D, et al. TGF-beta signal transduction:biology,function and therapy for diseases[J]. Mol Biomed, 2022, 3(1):45. doi:10.1186/s43556-022-00109-9.
|
[7] |
DELANGHE S, NGUYEN T Q, MAZURE D, et al. Immune complex glomerulonephritis in a patient with myelodysplastic syndrome with ring sideroblasts treated with luspatercept[J]. Diagnostics, 2022, 13(1):11. doi:10.3390/diagnostics13010011.
|
[8] |
MUENCH D E, FERCHEN K, VELU C S, et al. SKI controls MDS-associated chronic TGF-β signaling,aberrant splicing,and stem cell fitness[J]. Blood, 2018, 132(21):e24-e34. doi:10.1182/blood-2018-06-860890.
|
[9] |
韩冰, 李红敏, 陈芳菲, 等. 骨髓增生异常综合征贫血原因及治疗策略[J]. 天津医药, 2018, 46(8):794-798.
|
|
HAN B, LI H M, CHENG F F, et al. Etiology and treatment strategies of anemia in myelodysplastic syndromes[J]. Tianjin Med J, 2018, 46(8):794-798. doi:10.11958/20180561.
|
[10] |
CANAANI J. Emerging therapies for the myelodysplastic syndromes.[J]. Clinical hematology international, 2020, 2(1):13-17. doi:10.2991/chi.d.191202.001.
|
[11] |
LECOMTE S, DEVREUX J, de STREEL G, et al. Therapeutic activity of GARP:TGF-β1 blockade in murine primary myelofibrosis[J]. Blood, 2023, 141(5):490-502. doi:10.1182/blood.2022017097.
|
[12] |
ZHANG Y, YE T, GONG S, et al. RNA-sequencing based bone marrow cell transcriptome analysis reveals the potential mechanisms of E'jiao against blood-deficiency in mice[J]. Biomed Pharmacother, 2019,118:109291. doi: 10.1016/j.biopha.2019.109291.
|
[13] |
SURAGANI R N V S, CADENA S M, CAWLEY S M, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis[J]. Nature medicine, 2014, 20(4):408-414. doi:10.1038/nm.3512.
|
[14] |
BRUZZESE A, VIGNA E, MARTINO E A, et al. Myelodysplastic syndromes with ring sideroblasts[J]. Hematol Oncol, 2023, 41(4):612-620. doi:10.1002/hon.3125.
|
[15] |
KOUROUKLI O, SYMEONIDIS A, FOUKAS P, et al. Bone marrow immune microenvironment in myelodysplastic syndromes[J]. Cancers, 2022, 14(22):5656. doi:10.3390/cancers14225656.
|
[16] |
NAKAJIMA H. Pathogenesis and treatment of immune dysregulation associated with myelodysplastic syndromes[J]. Rinsho Ketsueki, 2023, 64(8):753-763. doi:10.11406/rinketsu.64.753.
|
[17] |
SUWABE T, SHIBASAKI Y, SATO H, et al. WT1-specific CD8+ cytotoxic T cells with the capacity for antigen-specific expansion accumulate in the bone marrow in MDS[J]. Int J Hematol, 2021,113:723-734. doi:10.1007/s12185-021-03083-0.
|
[18] |
ZHANG X, YANG X, MA L, et al. Immune dysregulation and potential targeted therapy in myelodysplastic syndrome[J]. Ther Adv Hematol, 2023,14:20406207231183330. doi:10.1177/20406207231183330.
|
[19] |
YI M, NIU M, XU L, et al. Regulation of PD-L1 expression in the tumor microenvironment[J]. J Hematol Oncol, 2021, 14(1):10.
|
[20] |
CHOKR N, PATEL R, WATTAMWAR K, et al. The rising era of immune checkpoint inhibitors in myelodysplastic syndromes[J]. Adv Hematol, 2018,2018:2458679. doi:10.1155/2018/2458679.
|
[21] |
VAN DORP J, VAN DER HEIJDEN M S. The bladder cancer immune micro-environment in the context of response to immune checkpoint inhibition[J]. Front Immunol, 2023,14:1235884. doi:10.3389/fimmu.2023.1235884.
|
[22] |
GULLEY J L, SCHLOM J, BARCELLOS-HOFF M H, et al. Dual inhibition of TGF-β and PD-L1:a novel approach to cancer treatment[J]. Molecular oncology, 2022, 16(11):2117-2134. doi:10.1002/1878-0261.13146
|
[23] |
YI M, LI T, NIU M, et al. TGF-β:a novel predictor and target for anti-PD-1/PD-L1 therapy[J]. Front Immunol, 2022,13:1061394. doi:10.3389/fimmu.2022.1061394.
|
[24] |
DE STREEL G, BERTRAND C, CHALON N, et al. Selective inhibition of TGF-β1 produced by GARP-expressing tregs overcomes resistance to PD-1/PD-L1 blockade in cancer[J]. Nat Commun, 2020, 11(1):4545. doi:10.1038/s41467-020-17811-3.
|
[25] |
CHIEN K S, KIM K, NOGUERAS-GONZALEZ G M, et al. Phase II study of azacitidine with pembrolizumab in patients with intermediate-1 or higher-risk myelodysplastic syndrome[J]. Br J Haematol, 2021, 195(3):378-387. doi:10.1111/bjh.17689.
|
[26] |
ARELLANO-BALLESTERO H, SABRY M, LOWDELL M W. A killer disarmed:natural killer cell impairment in myelodysplastic syndrome[J]. Cells, 2023, 12(4):633. doi:10.3390/cells12040633.
|
[27] |
SHAIM H, SHANLEY M, BASAR R, et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells[J]. J Clin Invest, 2021, 131(14):e142116. doi:10.1172/JCI142116.
|
[28] |
HUANGC H, LIAO Y J, CHIOU T J, et al. TGF-β regulated leukemia cell susceptibility against NK targeting through the down-regulation of the CD48 expression[J]. Immunobiology, 2019, 224(5):649-658. doi:10.1016/j.imbio.2019.07.002.
|
[29] |
REGIS S, DONDERO A, CALIENDO F, et al. NK cell function regulation by TGF-β-induced epigenetic mechanisms[J]. Front Immunol, 2020,11:311. doi:10.3389/fimmu.2020.00311.
|
[30] |
CASU B, DONDERO A, REGIS S, et al. Novel immunoregulatory functions of IL-18,an accomplice of TGF-β1[J]. Cancers, 2019, 11(1):75. doi:10.3390/cancers11010075.
|
[31] |
LEE Y S, CHOI H, CHO H R, et al. Downregulation of NKG2DLs by TGF-β in human lung cancer cells[J]. BMC Immunol, 2021, 22(1):44. doi:10.1186/s12865-021-00434-8.
|
[32] |
BURGA R A, YVON E, CHORVINSKY E, et al. Engineering the TGF-β receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma[J]. Clin Cancer Res, 2019, 25(14):4400-4412. doi:10.1158/1078-0432.CCR-18-3183.
|
[33] |
PITTET M J, MICHIELIN O, MIGLIORINI D. Clinical relevance of tumour-associated macrophages[J]. Nat Rev Clin Oncol, 2022, 19(6):402-421. doi:10.1038/s41571-022-00620-6.
|
[34] |
ELADL E, TREMBLAY-LEMAY R, RASTGOO N, et al. Role of CD47 in hematological malignancies[J]. J Hematol Oncol, 2020, 13(1):96. doi:10.1186/s13045-020-00930-1.
|
[35] |
CHAO M P, TAKIMOTO C H, FENG D D, et al. Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies[J]. Front Oncol, 2020,9:1380. doi:10.3389/fonc.2019.01380.
|
[36] |
LI W, WANG F, GUO R, et al. Targeting macrophages in hematological malignancies:recent advances and future directions[J]. J Hematol Oncol, 2022, 15(1):110. doi:10.1186/s13045-022-01328-x.
|
[37] |
TAJBAKHSH A, MOVAHEDPOUR A, SAVARDASHTAKI A, et al. The complex roles of efferocytosis in cancer development,metastasis,and treatment[J]. Biomed Pharmacother, 2021,140:111776.
|