| [1] |
NISHIYAMA T, ZHANG Y, CUI M, et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy[J]. Sci Transl Med, 2022, 14(672):1633-1661. doi:10.1126/scitranslmed.ade1633.
|
| [2] |
CHENG X, JIAN D, XING J, et al. Circulating cardiac MicroRNAs safeguard against dilated cardiomyopathy[J]. Clin Transl Med, 2023, 13(5):1258-1278. doi:10.1002/ctm2.1258.
|
| [3] |
ZENG C, DUAN F, HU J, et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy[J]. Redox Biol, 2020, 34(1):101523-101535. doi:10.1016/j.redox.2020.101523.
|
| [4] |
GROSCH M, SCHRAFT L, CHAN A, et al. Striated muscle-specific base editing enables correction of mutations causing dilated cardiomyopathy[J]. Nat Commun, 2023, 14(1):3714-3728. doi:10.1038/s41467-023-39352-1.
|
| [5] |
SCHÜTTE J P, MANKE M C, HEMMEN K, et al. Platelet-derived microRNAs regulate cardiac remodeling after myocardial ischemia[J]. Circ Res, 2023, 132(7):96-113. doi:10.1161/CIRCRESAHA.122.322459.
|
| [6] |
HUANG K, WEN S, HUANG J, et al. Integrated analysis of hub genes and miRNAs in dilated cardiomyopathy[J]. Biomed Res Int, 2020,2020:8925420-8925433. doi:10.1155/2020/8925420.
|
| [7] |
RUAN Y, LI H, CAO X, et al. Inhibition of the lncRNA DANCR attenuates cardiomyocyte injury induced by oxygen-glucose deprivation via the miR-19a-3p/MAPK1 axis[J]. Acta Biochim Biophys Sin(Shanghai), 2021, 53(10):1377-1386. doi:10.1093/abbs/gmab110.
|
| [8] |
YE Q, GU C, YAN W. Circ_0076490 silencing inhibits MAPK1 expression to decrease the proliferation and increase apoptosis of Jurkat cells by regulating miR-144-3p in myasthenia gravis[J]. Neurol Res, 2024, 46(11):1083-1093. doi:10.1080/01616412.2024.2394324.
|
| [9] |
YE X W, LI C S, ZHANG H X, et al. Saponins of ginseng products:a review of their transformation in processing[J]. Front Pharmacol, 2023, 14(1):1177819-1177834. doi:10.3389/fphar.2023.1177819.
|
| [10] |
常红波, 王振涛, 吴鸿, 等. 抗纤益心方通过调控线粒体动力学对扩张型心肌病小鼠心肌细胞凋亡的作用机制研究[J]. 北京中医药大学学报, 2023, 46(10):1391-1399.
|
|
CHANG H B, WANG Z T, WU H, et al. Effect of Kangxian Yixin Formula on cardiomyocyte apoptosis in mice withdilated cardiomyopathy via regulating mitochondrial dynamics[J]. Journal of Beijing University of Traditional Chinese Medicine, 2023, 46(10):1391-1399. doi:10.3969/i.issn.1006-2157.2023.10.010.
|
| [11] |
李佳奇. 红参总皂苷的提取分离及其改善大鼠心肌肥厚的保护作用研究[D]. 长春: 长春中医药大学, 2023.
|
|
LI J Q. Extraction and isolation of red ginseng saponins and theirprotective effect on improving cardiac hypertrophy in rats[D]. Changchun: Changchun University of Chinese Medicine, 2023.
|
| [12] |
NIE X, FAN J, DAI B, et al. LncRNA CHKB-DT downregulation enhances dilated cardiomyopathy through ALDH2[J]. Circ Res, 2024, 134(4):425-441. doi:10.1161/CIRCRESAHA.123.323428.
|
| [13] |
万艳波, 刘明, 王勇. 秦皮甲素调节HMGB1/RAGE信号通路对缺氧/复氧诱导的心肌细胞损伤的影响[J]. 天津医药, 2026, 54(8):796-801.
|
|
WAN Y B, LIU M, WANG Y. The effect of esculin on hypoxia/reoxygenation induced myocardial cell injury by regulatingHMGB1/RAGE signaling pathway[J]. Tianjin Med J, 2026, 54(8):796-801. doi:10.11958/20251272.
|
| [14] |
HAILU F T, KARIMPOUR-FARD A, TONI L S, et al. Integrated analysis of miRNA-mRNA interaction in pediatric dilated cardiomyopathy[J]. Pediatr Res, 2022, 92(1):98-108. doi:10.1038/s41390-021-01548-w.
|
| [15] |
TOTOŃ-ŻURAŃSKA J, SULICKA-GRODZICKA J, SEWERYN M T, et al. MicroRNA composition of plasma extracellular vesicles:a harbinger of late cardiotoxicity of doxorubicin[J]. Mol Med, 2022, 8(1):156-170. doi:10.1186/s10020-022-00588-0.
|
| [16] |
ZHANG D, PAN A, GU J, et al. Upregulation of miR-144-3p alleviates Doxorubicin-induced heart failure and cardiomyocytes apoptosis via SOCS2/PI3K/AKT axis[J]. Chem Biol Drug Des, 2023, 101(1):24-39. doi:10.1111/cbdd.14104.
|
| [17] |
ZHANG Q, WU X, YANG J. miR-194-5p protects against myocardial ischemia/reperfusion injury via MAPK1/PTEN/AKT pathway[J]. Ann Transl Med, 2021, 9(8):654-666. doi:10.21037/atm-21-807.
|
| [18] |
WANG W, NI Y, CAO G, et al. MicroRNA-330-5p mediates the TDRG1-Regulated myocardial inflammation and apoptosis after myocardial infarction by inhibiting MAPK1[J]. Int Heart J, 2024, 65(4):693-702. doi:10.1536/ihj.23-416.
|
| [19] |
LI J, LIN M, XIE Z, et al. Target cell extraction and spectrum-effect relationship coupled with bp neural network classification for screening potential bioactive components in ginseng extract with a protective effect against myocardial damage[J]. Molecules, 2024, 29(9):2028. doi:10.3390/molecules29092028.
|
| [20] |
WANG Y, WU J, ZHU J, et al. Ginsenosides regulation of lysophosphatidylcholine profiles underlies the mechanism of Shengmai Yin in attenuating atherosclerosis[J]. J Ethnopharmacol, 2021, 277(1):114223-114236. doi:10.1016/j.jep.2021.114223.
|
| [21] |
ZHAO Y, CUI Y, NI W, et al. Ginseng total saponin improves red blood cell oxidative stress injury by regulating tyrosine phosphorylation and glycolysis in red blood cells[J]. Phytomedicine, 2024, 130(1):155785. doi:10.1016/j.phymed.2024.155785.
|
| [22] |
曲萌, 翁诗雅, 郑鸿, 等. 发酵红参总皂苷对高糖培养大鼠心肌间质成纤维细胞的保护作用及其机制[J]. 吉林大学学报(医学版), 2021, 47(5):1201-1208.
|
|
QU M, WENG S Y, ZHENG H, et al. Protective effect of fermented red ginseng total saponins on ratmyocardial interstitial fibroblasts cultured with high glucoseand its mechanism[J]. Journal of Jilin University(Medicine Edition), 2021, 47(5):1201-1208. doi:10.13481/j.1671-587X.20210517.
|