Tianjin Medical Journal ›› 2025, Vol. 53 ›› Issue (8): 785-790.doi: 10.11958/20250458
• Cell and Molecular Biology • Next Articles
LIU Hong(), ZHANG Yueyue, WANG Yilin, WANG Caili, WANG Xiaomin, MAO Min, LI Yan△(
)
Received:
2025-02-10
Revised:
2025-05-14
Published:
2025-08-15
Online:
2025-08-12
Contact:
△E-mail:LIU Hong, ZHANG Yueyue, WANG Yilin, WANG Caili, WANG Xiaomin, MAO Min, LI Yan. The research on the mechanism of microRNA-34a influencing the progression of chronic lymphocytic leukemia by regulating the Wnt pathway[J]. Tianjin Medical Journal, 2025, 53(8): 785-790.
CLC Number:
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
miR-34a-5p | 上游:TGGCAGTGTCTTAGCTGGTTG | 58 |
下游:CTCAACTGGTGTCGTGGAGTC | ||
U6 | 上游:CTCGCTTCGGCAGCACAT | 94 |
下游:AACGCTTCACGAATTTGCGT | ||
p53 | 上游:CCGTGTAAAGATCCGGTACC CATTCTCCACTTCTTGTTCC | 540 |
下游:TCCTCGAGGATATCGGATCC GGTCAAGTTCTAGACCCCAT | ||
Wnt1 | 上游:CCGTGTAAAGATCCGGTACCA CAGACTCGCTAGCACTCAA | 540 |
下游:TCCTCGAGGATATCGGATCCTC ATTTCCACATCATCACAG |
Tab.1 The sequence of primer
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
miR-34a-5p | 上游:TGGCAGTGTCTTAGCTGGTTG | 58 |
下游:CTCAACTGGTGTCGTGGAGTC | ||
U6 | 上游:CTCGCTTCGGCAGCACAT | 94 |
下游:AACGCTTCACGAATTTGCGT | ||
p53 | 上游:CCGTGTAAAGATCCGGTACC CATTCTCCACTTCTTGTTCC | 540 |
下游:TCCTCGAGGATATCGGATCC GGTCAAGTTCTAGACCCCAT | ||
Wnt1 | 上游:CCGTGTAAAGATCCGGTACCA CAGACTCGCTAGCACTCAA | 540 |
下游:TCCTCGAGGATATCGGATCCTC ATTTCCACATCATCACAG |
组别 | 细胞增殖率/% | miR-34a-5p |
---|---|---|
Control组 | 102.31±7.75 | 1.02±0.02 |
p53激动剂组 | 83.16±3.89 | 2.06±0.10 |
t | 3.824* | 16.930** |
Tab.2 Comparison of cell proliferation rate and miR-34a-5p expression levels between the control group and the p53 agonist group (n=3,$\bar{x}±s$)
组别 | 细胞增殖率/% | miR-34a-5p |
---|---|---|
Control组 | 102.31±7.75 | 1.02±0.02 |
p53激动剂组 | 83.16±3.89 | 2.06±0.10 |
t | 3.824* | 16.930** |
组别 | p53 WT | p53 MUT |
---|---|---|
miR-34a-5p mimics NC组 | 1.11±0.04 | 1.12±0.10 |
miR-34a-5p mimics组 | 0.85±0.06 | 1.11±0.03 |
t | 6.462** | 0.169 |
Tab.3 Validation results of the targeting relationship between miR-34a-5p and p53 (n=3,$\bar{x}±s$)
组别 | p53 WT | p53 MUT |
---|---|---|
miR-34a-5p mimics NC组 | 1.11±0.04 | 1.12±0.10 |
miR-34a-5p mimics组 | 0.85±0.06 | 1.11±0.03 |
t | 6.462** | 0.169 |
组别 | miR-34a-5p | 细胞增殖率/% | 迁移细胞数/(个/视野) |
---|---|---|---|
Control组 | 1.03±0.08 | 104.91±4.62 | 238.80±17.94 |
miR-34a-5p mimics NC组 | 1.06±0.08 | 103.86±7.33 | 234.20±16.72 |
miR-34a-5p mimics组 | 1.81±0.09ab | 64.66±6.44ab | 69.40±5.64ab |
miR-34a-5p inhibitor NC组 | 1.06±0.04 | 106.83±5.63 | 242.40±11.74 |
miR-34a-5p inhibitor组 | 0.46±0.01ac | 122.64±8.25ac | 299.20±8.23ac |
F | 147.682** | 32.006** | 223.252** |
Tab.4 The effects of overexpression and inhibition of miR-34a-5p on the proliferation and migration abilities of MEC-1 cells (n=3,$\bar{x}±s$)
组别 | miR-34a-5p | 细胞增殖率/% | 迁移细胞数/(个/视野) |
---|---|---|---|
Control组 | 1.03±0.08 | 104.91±4.62 | 238.80±17.94 |
miR-34a-5p mimics NC组 | 1.06±0.08 | 103.86±7.33 | 234.20±16.72 |
miR-34a-5p mimics组 | 1.81±0.09ab | 64.66±6.44ab | 69.40±5.64ab |
miR-34a-5p inhibitor NC组 | 1.06±0.04 | 106.83±5.63 | 242.40±11.74 |
miR-34a-5p inhibitor组 | 0.46±0.01ac | 122.64±8.25ac | 299.20±8.23ac |
F | 147.682** | 32.006** | 223.252** |
组别 | Wnt1 WT | Wnt1 MUT |
---|---|---|
miR-34a-5p mimics NC组 | 1.08±0.03 | 1.12±0.02 |
miR-34a-5p mimics组 | 0.62±0.06 | 1.14±0.06 |
t | 12.796** | 0.371 |
Tab.5 Validation results of the targeting relationship between miR-34a-5p and Wnt1 (n=3,$\bar{x}±s$)
组别 | Wnt1 WT | Wnt1 MUT |
---|---|---|
miR-34a-5p mimics NC组 | 1.08±0.03 | 1.12±0.02 |
miR-34a-5p mimics组 | 0.62±0.06 | 1.14±0.06 |
t | 12.796** | 0.371 |
组别 | miR-34a-5p | 细胞增殖率/% | 迁移细胞数/(个/视野) |
---|---|---|---|
Control组 | 1.03±0.08 | 104.91±4.62 | 238.80±17.94 |
miR-34a-5p inhibitor NC组 | 1.06±0.04 | 106.83±5.63 | 242.40±11.74 |
miR-34a-5p inhibitor组 | 0.46±0.01ab | 122.64±8.25ab | 299.20±8.23ab |
miR-34a-5p inhibitor+XAV-939组 | 0.81±0.09ac | 111.78±3.61 | 184.60±3.21ac |
F | 59.106** | 5.649* | 81.547** |
Tab.6 Regulation of the expression of miR-34a-5p by XAV-939 and its effects on the proliferation and migration of MEC-1 cells (n=3,$\bar{x}±s$)
组别 | miR-34a-5p | 细胞增殖率/% | 迁移细胞数/(个/视野) |
---|---|---|---|
Control组 | 1.03±0.08 | 104.91±4.62 | 238.80±17.94 |
miR-34a-5p inhibitor NC组 | 1.06±0.04 | 106.83±5.63 | 242.40±11.74 |
miR-34a-5p inhibitor组 | 0.46±0.01ab | 122.64±8.25ab | 299.20±8.23ab |
miR-34a-5p inhibitor+XAV-939组 | 0.81±0.09ac | 111.78±3.61 | 184.60±3.21ac |
F | 59.106** | 5.649* | 81.547** |
组别 | β-catenin | Cyclin D1 |
---|---|---|
Control组 | 0.50±0.01 | 0.52±0.01 |
miR-34a-5p mimics NC组 | 0.47±0.02 | 0.50±0.03 |
miR-34a-5p mimics组 | 0.15±0.02ab | 0.12±0.01ab |
miR-34a-5p inhibitor NC组 | 0.50±0.01 | 0.53±0.03 |
miR-34a-5p inhibitor组 | 0.86±0.01ac | 0.94±0.02 ac |
miR-34a-5p inhibitor+XAV-939组 | 0.68±0.01d | 0.66±0.04d |
F | 911.200** | 366.803** |
Tab.7 Comparison of the protein expression levels of β-catenin and Cyclin D1 between the six groups (n=3,$\bar{x}±s$)
组别 | β-catenin | Cyclin D1 |
---|---|---|
Control组 | 0.50±0.01 | 0.52±0.01 |
miR-34a-5p mimics NC组 | 0.47±0.02 | 0.50±0.03 |
miR-34a-5p mimics组 | 0.15±0.02ab | 0.12±0.01ab |
miR-34a-5p inhibitor NC组 | 0.50±0.01 | 0.53±0.03 |
miR-34a-5p inhibitor组 | 0.86±0.01ac | 0.94±0.02 ac |
miR-34a-5p inhibitor+XAV-939组 | 0.68±0.01d | 0.66±0.04d |
F | 911.200** | 366.803** |
[1] | WIERDA W G, BROWN J, ABRAMSON J S, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma, version 2.2024, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2024, 22(3):175-204. doi:10.6004/jnccn.2024.0018. |
[2] | BLUME C J, HOTZ-WAGENBLATT A, HüLLEIN J, et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia[J]. Leukemia, 2015, 29(10):2015-2023. doi:10.1038/leu.2015.119. |
[3] | SHARMA S, PAVLASOVA G M, SEDA V, et al. miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: an axis affected by BCR inhibitors[J]. Blood, 2021, 137(18):2481-2494. doi:10.1182/blood.2020005627. |
[4] | CHANG T C, WENTZEL E A, KENT O A, et al. Transactivation of miR-34a-5p by p53 broadly influences gene expression and promotes apoptosis[J]. Mol Cell, 2007, 26(5):745-752. doi:10.1016/j.molcel.2007.05.010. |
[5] | EHRMANN A S, ZADRO A, TAUSCH E, et al. The NOTCH1 and miR-34a-5p signaling network is affected by TP53 alterations in CLL[J]. Leuk Lymphoma, 2024, 65(13):1941-1953. doi:10.1080/10428194.2024.2392839. |
[6] | 刘虹, 王晓敏, 毛敏, 等. 微RNA-34a在新疆维吾尔族和汉族慢性淋巴细胞白血病患者的表达及其预后意义[J]. 中华内科杂志, 2018, 57(12):922-925. |
LIU H, WANG X M, MAO M, et al. The expression and prognostic significance of microRNA-34a in Uygur and Han patients with chronic lymphocytic leukemia in Xinjiang Uygur Autonomous Region in China[J]. Chin J Intern Med, 2018, 57(12):922-925. doi:10.3760/cma.j.issn.0578-1426.2018.12.009. | |
[7] | LI Y, MAO M, LIU H, et al. miR-34a-5p and miR-29b as indicators for prognosis of treatment-free survival of chronic lymphocytic leukemia patients in Chinese Uygur and Han populations[J]. Mol Cell Probes, 2019,47:101436. doi:10.1016/j.mcp.2019.101436. |
[8] | BHATTACHARYA M, SHARMA A R, SHARMA G, et al. Interaction between miRNAs and signaling cascades of Wnt pathway in chronic lymphocytic leukemia[J]. J Cell Biochem, 2020, 121(11):4654-4666. doi:10.1002/jcb.29683. |
[9] | 赵晓玲. miR-34a-5p抑制剂靶向调控Wnt1激活Wnt/β-catenin通路预防七氟烷诱导的海马细胞凋亡[D]. 济南: 山东大学, 2019:16-18. |
ZHAO X L. MiR-34a inhibitor targets Wnt1 to activate Wnt/β-catenin pathway to prevent sevoflurane-induced apoptosis in hippocampal cells[D]. Jinan: Shandong University, 2019:16-18. | |
[10] | SI W, LI Y, SHAO H, et al. MiR-34a inhibits breast cancer proliferation and progression by targeting Wnt1 in Wnt/β-Catenin signaling pathway[J]. Am J Med Sci, 2016, 352(2):191-199. doi:10.1016/j.amjms.2016.05.002. |
[11] | WANG Y, GUAN E, LI D, et al. miRNA-34a-5p regulates progression of neuroblastoma via modulating the Wnt/β-catenin signaling pathway by targeting SOX4[J]. Medicine(Baltimore), 2021, 100(20):e25827. doi:10.1097/MD.0000000000025827. |
[12] | LI X, ZHAO S, FU Y, et al. miR-34a-5p functions as a tumor suppressor in head and neck squamous cell cancer progression by targeting Flotillin-2[J]. Int J Biol Sci, 2021, 17(15): 4327-4339. doi:10.7150/ijbs.64851. |
[13] | 周坚, 潘晓冉, 李小娟. miRNA-34a通过调控SOX4/RAS/MAPK信号通路对中枢神经系统淋巴瘤进展的影响[J]. 河北医学, 2023, 29(2):189-194. |
ZHOU J, PAN X R, LI X J. Effect of miRNA-34a on the progression of central nervous system lymphoma by regulating SOX4/RAS/MAPK Z[J]. Hebei Medicine, 2023, 29(2):189-194. doi:10.3969/j.issn.1006-6233.2023.02.03. | |
[14] | XU X P, PENG X Q, YIN X M, et al. miR-34a-5p suppresses the invasion and metastasis of liver cancer by targeting the transcription factor YY1 to mediate MYCT1 upregulation[J]. Acta Histochem, 2020, 122(6):151576. doi:10.1016/j.acthis.2020.151576. |
[15] | CAO L, LIU Y, LU J B, et al. A feedback circuit of miR-34a-5p/MDM4/p53 regulates apoptosis in chronic lymphocytic leukemia cells[J]. Transl Cancer Res, 2020, 9(10):6143-6153. doi:10.21037/tcr-20-1710. |
[16] | MRAZ M, CERNA K, MAYEROVA V, et al. Microrna-34a as a marker for fludarabine resistance and impairment of p53-pathway in chronic lymphocytic leukemia[J]. Blood, 2012, 120(21):3883-3883. doi:10.1182/blood.v120.21.3883.3883. |
[17] | 许家威, 郭一慧, 宋辉, 等. Wnt/β-catenin信号通路在多发性骨髓瘤中的机制研究进展[J]. 天津医药, 2022, 50(8):888-891. |
XU J W, GUO Y H, SONG H, et al. The research progress on the mechanism of Wnt/β-catenin signaling pathway involved in multiple myeloma[J]. Tianjin Med J, 2022, 50(8):888-891. doi:10.11958/20220179. | |
[18] | 张慧, 陈华宁, 库德莱迪·库尔班, 等. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗[J]. 中国生物工程杂志, 2022, 42(1):104-111. |
ZHANG H, CHEN H N, KUDLEDI K, et al. The role of Wnt/β-catenin signaling pathway in carcinogenesis and immunotherapy[J]. China Biotechnology, 2022, 42(1):104-111. doi:10.13523/j.cb.2108017. | |
[19] | MANGOLINI M, GöTTE F, MOORE A, et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia[J]. Nat Commun, 2018, 9(1):3839. doi:10.1038/s41467-018-06069-5. |
[20] | JANOVSKá P, BRYJA V. Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas[J]. Br J Pharmacol, 2017, 174(24):4701-4715. doi:10.1111/bph.13949. |
[21] | WELLENSTEIN M D, COFFELT S B, DUITS D, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis[J]. Nature, 2019, 572(7770):538-542. doi:10.1038/s41586-019-1450-6. |
[22] | SINHA S, SECRETO C R, BOYSEN J C, et al. Upregulation of AXL and β-catenin in chronic lymphocytic leukemia cells cultured with bone marrow stroma cells is associated with enhanced drug resistance[J]. Blood Cancer J, 2021, 11(2):37. doi:10.1038/s41408-021-00426-2. |
[23] | 高莹, 崔京淑, 刘兰, 等. 口腔鳞状细胞癌中细胞周期蛋白D1的表达水平及其临床意义[J]. 延边大学医学学报, 2022, 45(2):115-118. |
GAO Y, CUI J S, LIU L, et al. Expression of Cyclin D1 in oral squamous cell carcinoma and its clinical significance[J]. Journal of Medical Science Yanbian University, 2022, 45(2):115-118. doi:10.16068/j.1000-1824.2022.02.008. | |
[24] | HAO J, ZHANG W, LYU Y, et al. Combined use of cyclinD1 and Ki67 for prognosis of luminal-like breast cancer patients[J]. Front Oncol, 2021,11:737794. doi:10.3389/fonc.2021.737794. |
[25] | 秦燕子, 吴晨辰, 蔡兆根, 等. 经典型甲状腺乳头状癌中CHI3L1、β-catenin及Cyclin D1的表达及临床意义[J]. 临床与实验病理学杂志, 2021, 37(7):792-797. |
QIN Y Z, WU C C, CAI Z G, et al. Expression of CHI3L1,β-catenin and Cyclin D1 in classic thyroid papillary carcinoma and their clinical significance[J]. Chinese Journal of Clinical and Experimental Pathology, 2021, 37(7):792-797.doi:10.13315/j.cnki.cjcep.2021.07.006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||