Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (1): 69-73.doi: 10.11958/20220641
• Clinical Research • Previous Articles Next Articles
ZHANG Manli1(), LIU Weiwei1, WANG Lijuan2, LI Weidong3
Received:
2022-04-26
Revised:
2022-05-13
Published:
2023-01-15
Online:
2023-01-17
ZHANG Manli, LIU Weiwei, WANG Lijuan, LI Weidong. The correlation between the level of reticulin 1C in peripheral blood mononuclear cells and the efficacy of neoadjuvant chemotherapy for triple negative breast cancer[J]. Tianjin Medical Journal, 2023, 51(1): 69-73.
CLC Number:
组别 | n | T0 | T1 | T2 | T3 | F |
---|---|---|---|---|---|---|
完全缓 解组 | 47 | 2.15±0.32 | 1.52±0.21a | 1.06±0.17ab | 0.88±0.09abc | 320.408** |
未完全 缓解组 | 107 | 2.16±0.34 | 1.65±0.31a | 1.02±0.20ab | 0.97±0.08ab | 510.894** |
t | 0.088 | 3.128** | 1.028 | 6.797** |
Tab.1 Comparison of RTN-1C expression levels between the two groups $\bar{x}±s$
组别 | n | T0 | T1 | T2 | T3 | F |
---|---|---|---|---|---|---|
完全缓 解组 | 47 | 2.15±0.32 | 1.52±0.21a | 1.06±0.17ab | 0.88±0.09abc | 320.408** |
未完全 缓解组 | 107 | 2.16±0.34 | 1.65±0.31a | 1.02±0.20ab | 0.97±0.08ab | 510.894** |
t | 0.088 | 3.128** | 1.028 | 6.797** |
指标 | AUC | 95%CI | 最佳截断点 | 敏感度 | 特异度 |
---|---|---|---|---|---|
T0-RTN-1C | 0.503 | 0.421~0.584 | 2.39 | 0.794 | 0.298 |
T1-RTN-1C | 0.615 | 0.534~0.693 | 1.82 | 0.308 | 1.000 |
T2-RTN-1C | 0.546 | 0.464~0.626 | 0.82 | 0.224 | 0.915 |
T3-RTN-1C | 0.806 | 0.735~0.866 | 0.91 | 0.804 | 0.787 |
Tab.2 RTN-1C in judging the efficacy of neoadjuvant chemotherapy
指标 | AUC | 95%CI | 最佳截断点 | 敏感度 | 特异度 |
---|---|---|---|---|---|
T0-RTN-1C | 0.503 | 0.421~0.584 | 2.39 | 0.794 | 0.298 |
T1-RTN-1C | 0.615 | 0.534~0.693 | 1.82 | 0.308 | 1.000 |
T2-RTN-1C | 0.546 | 0.464~0.626 | 0.82 | 0.224 | 0.915 |
T3-RTN-1C | 0.806 | 0.735~0.866 | 0.91 | 0.804 | 0.787 |
组别 | n | 年龄 | 月经状态 | 病理类型 | Ki-67 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤45岁 | >45岁 | 绝经前 | 绝经后 | 浸润性导管癌 | 浸润性小叶癌 | 髓样癌 | ≤30% | >30% | |||||||||||||
完全缓解组 | 47 | 22(46.8) | 25(53.2) | 27(57.4) | 20(42.6) | 41(87.2) | 4(8.5) | 2(4.3) | 3(6.4) | 44(93.6) | |||||||||||
未完全缓解组 | 107 | 59(55.1) | 48(44.9) | 72(67.3) | 35(32.7) | 93(86.9) | 9(8.4) | 5(4.7) | 29(27.1) | 78(72.9) | |||||||||||
χ2 | 0.909 | 1.378 | 0.016 | 8.517** | |||||||||||||||||
组别 | T3-RTN-1C | 肿瘤直径 | N分期 | 组织学分级 | |||||||||||||||||
≤0.91 | >0.91 | ≤2 cm | 2~5 cm | >5 cm | N0 | N1 | N2 | Ⅰ | Ⅱ | Ⅲ | |||||||||||
完全缓解组 | 37(78.7) | 10(21.3) | 3(6.4) | 33(70.2) | 11(23.4) | 23(48.9) | 20(42.6) | 4(8.5) | 18(38.3) | 26(55.3) | 3(6.4) | ||||||||||
未完全缓解组 | 21(19.6) | 86(80.4) | 8(7.5) | 73(68.2) | 26(24.3) | 19(17.8) | 50(46.7) | 38(35.5) | 9(8.4) | 79(73.8) | 19(17.8) | ||||||||||
χ2 | 48.578** | 0.084 | 20.497** | 21.236** |
Tab.3 Comparison of baseline data between the two groups
组别 | n | 年龄 | 月经状态 | 病理类型 | Ki-67 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤45岁 | >45岁 | 绝经前 | 绝经后 | 浸润性导管癌 | 浸润性小叶癌 | 髓样癌 | ≤30% | >30% | |||||||||||||
完全缓解组 | 47 | 22(46.8) | 25(53.2) | 27(57.4) | 20(42.6) | 41(87.2) | 4(8.5) | 2(4.3) | 3(6.4) | 44(93.6) | |||||||||||
未完全缓解组 | 107 | 59(55.1) | 48(44.9) | 72(67.3) | 35(32.7) | 93(86.9) | 9(8.4) | 5(4.7) | 29(27.1) | 78(72.9) | |||||||||||
χ2 | 0.909 | 1.378 | 0.016 | 8.517** | |||||||||||||||||
组别 | T3-RTN-1C | 肿瘤直径 | N分期 | 组织学分级 | |||||||||||||||||
≤0.91 | >0.91 | ≤2 cm | 2~5 cm | >5 cm | N0 | N1 | N2 | Ⅰ | Ⅱ | Ⅲ | |||||||||||
完全缓解组 | 37(78.7) | 10(21.3) | 3(6.4) | 33(70.2) | 11(23.4) | 23(48.9) | 20(42.6) | 4(8.5) | 18(38.3) | 26(55.3) | 3(6.4) | ||||||||||
未完全缓解组 | 21(19.6) | 86(80.4) | 8(7.5) | 73(68.2) | 26(24.3) | 19(17.8) | 50(46.7) | 38(35.5) | 9(8.4) | 79(73.8) | 19(17.8) | ||||||||||
χ2 | 48.578** | 0.084 | 20.497** | 21.236** |
变量 | β | SE | Wald χ2 | P | OR | OR95%CI |
---|---|---|---|---|---|---|
Ki-67 | -1.217 | 0.736 | 2.731 | 0.098 | 0.296 | 0.070~1.254 |
T3-RTN-1C | 2.500 | 0.475 | 27.639 | <0.001 | 12.178 | 4.796~30.924 |
N分期 | 0.779 | 0.349 | 4.983 | 0.026 | 2.180 | 1.100~4.322 |
组织学分级 | 1.284 | 0.464 | 7.640 | 0.006 | 3.609 | 1.453~8.969 |
常数项 | -2.530 | 1.106 | 5.235 | 0.022 | 0.080 |
Tab.4 Logistic regression analysis of risk factors of neoadjuvant chemotherapy
变量 | β | SE | Wald χ2 | P | OR | OR95%CI |
---|---|---|---|---|---|---|
Ki-67 | -1.217 | 0.736 | 2.731 | 0.098 | 0.296 | 0.070~1.254 |
T3-RTN-1C | 2.500 | 0.475 | 27.639 | <0.001 | 12.178 | 4.796~30.924 |
N分期 | 0.779 | 0.349 | 4.983 | 0.026 | 2.180 | 1.100~4.322 |
组织学分级 | 1.284 | 0.464 | 7.640 | 0.006 | 3.609 | 1.453~8.969 |
常数项 | -2.530 | 1.106 | 5.235 | 0.022 | 0.080 |
[1] | DESANTIS C E, MA J, GODING SAUER A, et al. Breast cancer statistics,2017,racial disparity in mortality by state[J]. CA Cancer J Clin,2017, 67(6):439-448. doi:10.3322/caac.21412. |
[2] | MIAO K, LEI J H, VALECHA M V, et al. NOTCH1 activation compensates BRCA1 deficiency and promotes triple-negative breast cancer formation[J]. Nat Commun, 2020, 11(1):3256. doi:10.1038/s41467-020-16936-9. |
[3] | 陈茂山, 莫琳龙, 杨宏伟, 等. FAT4在三阴性乳腺癌组织中的表达及其临床意义[J]. 中国普通外科杂志, 2020, 29(5):525-531. |
CHEN M S, MO L L, YANG H W, et al. FAT4 expression in triple negative breast cancer and its clinical significance[J]. Chinese Journal of General Surgery, 2020, 29(5):525-531. doi:10.7659/j.issn.1005-6947.2020.05.002. | |
[4] | CORTAZAR P, ZHANG L, UNTCH M, et al. Pathological complete response and long-term clinical benefit in breast cancer:the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938):164-172. doi:10.1016/S0140-6736(13)62422-8. |
[5] | 刘杰娜, 张建国, 郭宝良, 等. 乳腺癌患者Ki-67表达水平对新辅助化疗后病理学完全缓解的预测价值[J]. 中国普通外科杂志, 2018, 27(5):608-614. |
LIU J N, ZHANG J G, GUO B L, et al. Predictive value of Ki-67 expression level in breast cancer patients for pathological complete remission after neoadjuvant chemotherapy[J]. Chinese Journal of General Surgery, 2018, 27(5):608-614. doi:10.3978/j.issn.1005-6947.2018.05.013. | |
[6] | FAZI B, MELINO S, DE RUBEIS S, et al. Acetylation of RTN-1C regulates the induction of ER stress by the inhibition of HDAC activity in neuroectodermal tumors[J]. Oncogene, 2009, 28(43):3814-3824. doi:10.1038/onc.2009.233. |
[7] | D' ELETTO M, RISUGLIA A, OLIVERIO S, et al. Modulation of autophagy by RTN-1C:role in autophagosome biogenesis[J]. Cell Death Dis, 2019, 10(12):868. doi:10.1038/s41419-019-2099-7. |
[8] | LI T, ZHANG S, CHEN F, et al. Formononetin ameliorates the drug resistance of Taxol resistant triple negative breast cancer by inhibiting autophagy[J]. Am J Transl Res, 2021, 13(2):497-514. |
[9] | ASHRAFIZADEH M, MOHAMMADINEJAD R, TAVAKOL S, et al. New insight into triple-negative breast cancer therapy:The potential roles of endoplasmic reticulum stress and autophagy mechanisms[J]. Anticancer Agents Med Chem, 2021, 21(6):679-691. doi:10.2174/1871520620666200619180716. |
[10] | LI Q W, ZHANG G L, HAO C X, et al. SANT,a novel Chinese herbal monomer combination, decreasing tumor growth and angiogenesis via modulating autophagy in heparanase overexpressed triple-negative breast cancer[J]. J Ethnopharmacol, 2021, 266:113430. doi:10.1016/j.jep.2020.113430. |
[11] | 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2019年版)[J]. 中国癌症杂志, 2019, 29(8):609-679. |
Breast Cancer Professional Committee of China Anti-Cancer Association. Guidelines and Specifications for Breast Cancer Diagnosis and Treatment of China Anti-Cancer Association(2019 Edition)[J]. China Oncology, 2019, 29(8):609-679. doi:10.19401/j.cnki.1007-3639.2019.08.009. | |
[12] | LEE A, DJAMGOZ M. Triple negative breast cancer:Emerging therapeutic modalities and novel combination therapies[J]. Cancer Treat Rev, 2018, 62:110-122. doi:10.1016/j.ctrv.2017.11.003. |
[13] | 刘德樟, 周小忠, 黄鑫, 等. 动态对比增强磁共振成像特征对三阴性乳腺癌新辅助化疗肿瘤反应的预测价值研究[J]. 实用放射学杂志, 2019, 35(6):909-913. |
LIU D Z, ZHOU X Z, HUANG X, et al. The value of DCEGMRI in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer[J]. Journal of Practical Radiology, 2019, 35(6):909-913. doi:10.3969/j.issn.1002G1671.2019.06.014. | |
[14] | HU Y, ZHANG H R, DONG L, et al. Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles[J]. Nanoscale, 2019, 11(24):11789-11807. doi:10.1039/c8nr08442d. |
[15] | LIMAGNE E, NUTTIN L, THIBAUDIN M, et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells[J]. Cancer Cell, 2022, 40(2):136-152.e12. doi:10.1016/j.ccell.2021.12.009. |
[16] | NARDONE V, BARBARINO M, ANGRISANI A, et al. CDK4,CDK6/cyclin-D1 complex inhibition and radiotherapy for cancer control:A role for autophagy[J]. Int J Mol Sci, 2021, 22(16):8391. doi:10.3390/ijms22168391. |
[17] | LI Y, CHO M H, LEE S S, et al. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy[J]. J Control Release, 2020, 325:100-110. doi:10.1016/j.jconrel.2020.06.025. |
[18] | GAO L, WANG Q, REN W, et al. The RBP1-CKAP4 axis activates oncogenic autophagy and promotes cancer progression in oral squamous cell carcinoma[J]. Cell Death Dis, 2020, 11(6):488. doi:10.1038/s41419-020-2693-8. |
[19] | REALI V, MEHDAWY B, NARDACCI R, et al. Reticulon protein-1C is a key component of MAMs[J]. Biochim Biophys Acta, 2015, 1853(3):733-745. doi:10.1016/j.bbamcr.2014.12.031. |
[20] | 何浪. 基于基因表达谱的乳腺癌外周血与肿瘤局部免疫微环境关联性研究[D]. 成都: 电子科技大学, 2016. |
HE L. Relationship between breast cancer peripheral blood and tumor local immune microenvironment based on gene expression profile[D]. Chengdu: University of Electronic Science and Technology of China, 2016. doi:10.7666/d.D00991103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||