Tianjin Medical Journal ›› 2022, Vol. 50 ›› Issue (10): 1031-1036.doi: 10.11958/20220260
• Experimental Research • Previous Articles Next Articles
WANG Qiang(), KUANG Shixiang, LI Ruozhao, LOU Jinbo, QIAN Yijia, YONG Bo, LIU Yunquan(
)
Received:
2022-02-20
Revised:
2022-06-12
Published:
2022-10-15
Online:
2022-10-20
Contact:
LIU Yunquan
E-mail:liukangjing2006@163.com;1710547138@qq.com
WANG Qiang, KUANG Shixiang, LI Ruozhao, LOU Jinbo, QIAN Yijia, YONG Bo, LIU Yunquan. Exploration on the regulation mechanism of Bupi Qiangli compound in immune system balance of EAMG rats based on HPTT axis[J]. Tianjin Medical Journal, 2022, 50(10): 1031-1036.
CLC Number:
组别 | 建模前 | 建模后 | 给药后 |
---|---|---|---|
对照组 | 190.33±1.73 | 278.08±2.63 | 303.92±2.49 |
模型组 | 191.14±2.02 | 205.21±5.29a | 193.88±2.86a |
低剂量组 | 189.69±1.46 | 201.44±3.00a | 208.63±3.04a |
中剂量组 | 190.72±1.47 | 211.13±6.19a | 213.69±4.29ab |
高剂量组 | 190.38±1.78 | 209.66±5.46a | 227.15±2.94ab |
西药组 | 191.34±2.41 | 203.87±2.72a | 229.40±3.21ab |
F | 2.117 | 928.100** | 295.100** |
Tab. 1 Changes of body mass of rats in each group
组别 | 建模前 | 建模后 | 给药后 |
---|---|---|---|
对照组 | 190.33±1.73 | 278.08±2.63 | 303.92±2.49 |
模型组 | 191.14±2.02 | 205.21±5.29a | 193.88±2.86a |
低剂量组 | 189.69±1.46 | 201.44±3.00a | 208.63±3.04a |
中剂量组 | 190.72±1.47 | 211.13±6.19a | 213.69±4.29ab |
高剂量组 | 190.38±1.78 | 209.66±5.46a | 227.15±2.94ab |
西药组 | 191.34±2.41 | 203.87±2.72a | 229.40±3.21ab |
F | 2.117 | 928.100** | 295.100** |
组别 | 建模前 | 建模后 | 给药后 |
---|---|---|---|
对照组 | 0 | 0 | 0 |
模型组 | 0 | 2.1±0.3a | 2.5±0.3a |
低剂量组 | 0 | 2.0±0.4a | 1.7±0.3ab |
中剂量组 | 0 | 1.9±0.5a | 1.6±0.3ab |
高剂量组 | 0 | 2.1±0.4a | 1.1±0.2abcd |
西药组 | 0 | 2.2±0.3 a | 1.2±0.2abcd |
F | - | 57.410** | 117.100** |
Tab. 2 Changes of Lennon scores in each group
组别 | 建模前 | 建模后 | 给药后 |
---|---|---|---|
对照组 | 0 | 0 | 0 |
模型组 | 0 | 2.1±0.3a | 2.5±0.3a |
低剂量组 | 0 | 2.0±0.4a | 1.7±0.3ab |
中剂量组 | 0 | 1.9±0.5a | 1.6±0.3ab |
高剂量组 | 0 | 2.1±0.4a | 1.1±0.2abcd |
西药组 | 0 | 2.2±0.3 a | 1.2±0.2abcd |
F | - | 57.410** | 117.100** |
组别 | CD4+CD25+ | CD4+CD25+Foxp3+ | |||
---|---|---|---|---|---|
对照组 | 70.13±12.42 | 75.58±12.64 | |||
模型组 | 56.92±10.04a | 49.21±6.02a | |||
低剂量组 | 61.82±11.78 | 58.87±12.46a | |||
中剂量组 | 67.99±14.52b | 63.77±13.40ab | |||
高剂量组 | 69.95±15.67bc | 71.24±12.78bcd | |||
西药组 | 70.03±13.84bc | 75.13±15.81bcd | |||
F | 13.761** | 6.857** | |||
组别 | CD4+Foxp3+ | CD4+CD25-Foxp3+ | CD4+CD25+Foxp3- | ||
对照组 | 98.61±4.69 | 27.19±9.63 | 2.59±0.96 | ||
模型组 | 95.48±3.59 | 45.12±4.11a | 4.18±0.62a | ||
低剂量组 | 95.91±4.38 | 38.44±3.03a | 3.52±0.73 | ||
中剂量组 | 96.42±3.25 | 30.18±4.19bc | 3.25±0.69b | ||
高剂量组 | 97.16±4.08 | 29.78±3.46bc | 2.83±0.57b | ||
西药组 | 95.27±3.05 | 28.09±2.72bc | 2.79±0.80b | ||
F | 1.032 | 19.461** | 6.374** |
Tab. 3 Expression levels of characteristic surface markers of thymus Treg cells in each group of rats
组别 | CD4+CD25+ | CD4+CD25+Foxp3+ | |||
---|---|---|---|---|---|
对照组 | 70.13±12.42 | 75.58±12.64 | |||
模型组 | 56.92±10.04a | 49.21±6.02a | |||
低剂量组 | 61.82±11.78 | 58.87±12.46a | |||
中剂量组 | 67.99±14.52b | 63.77±13.40ab | |||
高剂量组 | 69.95±15.67bc | 71.24±12.78bcd | |||
西药组 | 70.03±13.84bc | 75.13±15.81bcd | |||
F | 13.761** | 6.857** | |||
组别 | CD4+Foxp3+ | CD4+CD25-Foxp3+ | CD4+CD25+Foxp3- | ||
对照组 | 98.61±4.69 | 27.19±9.63 | 2.59±0.96 | ||
模型组 | 95.48±3.59 | 45.12±4.11a | 4.18±0.62a | ||
低剂量组 | 95.91±4.38 | 38.44±3.03a | 3.52±0.73 | ||
中剂量组 | 96.42±3.25 | 30.18±4.19bc | 3.25±0.69b | ||
高剂量组 | 97.16±4.08 | 29.78±3.46bc | 2.83±0.57b | ||
西药组 | 95.27±3.05 | 28.09±2.72bc | 2.79±0.80b | ||
F | 1.032 | 19.461** | 6.374** |
组别 | AchR-Ab(pmol/L) | TNF-β(ng/L) | IL-4(ng/L) | IL-10(ng/L) |
---|---|---|---|---|
对照组 | 0.23±0.05 | 58.26±6.69 | 42.13±9.73 | 45.23±7.52 |
模型组 | 0.45±0.04a | 89.18±9.59a | 68.83±15.83a | 72.11±8.02a |
低剂量组 | 0.41±0.06a | 77.49±10.04ab | 61.93±14.52a | 68.37±9.46a |
中剂量组 | 0.38±0.05ab | 69.42±8.28abc | 58.24±12.34ab | 61.37±8.47ab |
高剂量组 | 0.26±0.08bcd | 61.06±7.35bcd | 49.39±11.53b | 50.14±6.78bcd |
西药组 | 0.24±0.04bcd | 59.56±6.57bcd | 48.27±10.94b | 48.63±7.41bcd |
F | 30.516** | 22.223** | 6.143** | 19.736** |
Tab. 4 Comparison of serum levels of AchR-Ab and thymus Treg cell-related factors between the six groups of rats
组别 | AchR-Ab(pmol/L) | TNF-β(ng/L) | IL-4(ng/L) | IL-10(ng/L) |
---|---|---|---|---|
对照组 | 0.23±0.05 | 58.26±6.69 | 42.13±9.73 | 45.23±7.52 |
模型组 | 0.45±0.04a | 89.18±9.59a | 68.83±15.83a | 72.11±8.02a |
低剂量组 | 0.41±0.06a | 77.49±10.04ab | 61.93±14.52a | 68.37±9.46a |
中剂量组 | 0.38±0.05ab | 69.42±8.28abc | 58.24±12.34ab | 61.37±8.47ab |
高剂量组 | 0.26±0.08bcd | 61.06±7.35bcd | 49.39±11.53b | 50.14±6.78bcd |
西药组 | 0.24±0.04bcd | 59.56±6.57bcd | 48.27±10.94b | 48.63±7.41bcd |
F | 30.516** | 22.223** | 6.143** | 19.736** |
组别 | T3(μg/L) | T4(μg/L) | T3R(fmol/mg DNA) | NE(ng/g) | TSH(μg/L) | TRH(ng/L) |
---|---|---|---|---|---|---|
对照组 | 1.92±0.26 | 119.41±9.49 | 178.51±32.63 | 793.19±122.96 | 11.39±1.66 | 154.61±31.61 |
模型组 | 1.87±0.19 | 112.05±10.43 | 125.32±45.29a | 453.59±102.86a | 29.94±3.38a | 289.82±51.59a |
低剂量组 | 1.94±0.21 | 116.23±10.13 | 131.40±39.96a | 508.96±113.04a | 26.61±2.34a | 227.19±51.42ab |
中剂量组 | 1.88±0.10 | 111.89±17.06 | 155.41±36.19ab | 553.27±104.39ab | 21.65±1.18bc | 195.26±45.26b |
高剂量组 | 1.93±0.25 | 110.99±11.55 | 169.57±45.46bcd | 687.22±122.34bcd | 18.92±1.23abcd | 161.86±44.37bc |
西药组 | 1.82±0.07 | 111.42±16.22 | 173.99±42.72bcd | 696.24±123.31bcd | 19.82±1.40abcd | 159.23±35.75bc |
F | 0.551 | 0.698 | 3.100* | 12.774** | 102.272** | 14.465** |
Tab. 5 Effects of Bupi Qiangli compound on functional impairment index of HPTT axis
组别 | T3(μg/L) | T4(μg/L) | T3R(fmol/mg DNA) | NE(ng/g) | TSH(μg/L) | TRH(ng/L) |
---|---|---|---|---|---|---|
对照组 | 1.92±0.26 | 119.41±9.49 | 178.51±32.63 | 793.19±122.96 | 11.39±1.66 | 154.61±31.61 |
模型组 | 1.87±0.19 | 112.05±10.43 | 125.32±45.29a | 453.59±102.86a | 29.94±3.38a | 289.82±51.59a |
低剂量组 | 1.94±0.21 | 116.23±10.13 | 131.40±39.96a | 508.96±113.04a | 26.61±2.34a | 227.19±51.42ab |
中剂量组 | 1.88±0.10 | 111.89±17.06 | 155.41±36.19ab | 553.27±104.39ab | 21.65±1.18bc | 195.26±45.26b |
高剂量组 | 1.93±0.25 | 110.99±11.55 | 169.57±45.46bcd | 687.22±122.34bcd | 18.92±1.23abcd | 161.86±44.37bc |
西药组 | 1.82±0.07 | 111.42±16.22 | 173.99±42.72bcd | 696.24±123.31bcd | 19.82±1.40abcd | 159.23±35.75bc |
F | 0.551 | 0.698 | 3.100* | 12.774** | 102.272** | 14.465** |
[1] | FARMAKIDIS C, PASNOOR M, DIMACHKIE M M, et al. Treatment of myasthenia gravis[J]. Neurol Clin, 2018, 36(2):311-337. doi: 10.1016/j.ncl.2018.01.011. |
[2] | MANTEGAZZA R, BERNASCONI P, CAVALCANTE P. Myasthenia gravis:From autoantibodies to therapy[J]. Curr Opin Neurol, 2018, 31(5):517-525. doi: 10.1097/WCO.0000000000000596. |
[3] | MARTÍNEZ TORRE S, GÓMEZ MOLINERO I, MARTÍNEZ GIRÓN R. An update on myasthenia gravis[J]. Semergen, 2018, 44(5):351-354. doi: 10.1016/j.semerg.2018.01.003. |
[4] | 况时祥, 况耀鋆. 重症肌无力中西医结合分型分期论治探讨[J]. 中国中医急症, 2019, 28(11):1993-1997. |
KUANG S X, KUANG Y Y. Discussion on traditional Chinese combined with western medicine on myasthenia gravis by types and stage[J]. Journal of Emergency in Traditional Chinese Medicine, 2019, 28(11):1993-1997. doi: 10.3969/j.issn.1004-745X.2019.11.030. | |
[5] | NUNES C, SUCENA É, KOYAMA T. Endocrine regulation of immunity in insects[J]. FEBS J, 2021, 288(13):3928-3947. doi: 10.1111/febs.15581. |
[6] | WRIGHT J J, POWERS A C, JOHNSON D B. Endocrine toxicities of immune checkpoint inhibitors[J]. Nat Rev Endocrinol, 2021, 17(7):389-399. doi: 10.1038/s41574-021-00484-3. |
[7] | 付海尔, 李建民, 刘玉红. 左归丸对肾阴虚模型大鼠神经-内分泌-免疫功能的影响[J]. 中国实验方剂学杂志, 2017, 23(22):155-159. |
FU H E, LI J M, LIU Y H. Effect of Zuoguiwan on neuro-endocrine-immune function of kidney-yin deficiency rats[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(22):155-159. doi: 10.13422/j.cnki.syfjx.2017220155. | |
[8] | MAIMAITIMING B, UZAWA A, OZAWA Y, et al. High mobility group box 1 is involved in the pathogenesis of passive transfer myasthenia gravis model[J]. Neuroreport, 2021, 32(9):803-807. doi: 10.1097/WNR.0000000000001665. |
[9] | 袁静, 梁佳, 赵颂, 等. 地塞米松诱导的危重病性肌病大鼠的TGF-β/Smad表达[J]. 山东医药, 2011, 51(49):26-27. |
YUAN J, LIANG J, ZHAO S, et al. Expression of TGF-β/Smad in dexamethasone-induced critically myopathy rats[J]. Shandong Medical Journal, 2011, 51(49):26-27. doi: 10.3969/j.issn.1002-266X.2011.49.017. | |
[10] | 宋洁, 李震, 于海芳. 从下丘脑-垂体-甲状腺轴研究肾阳虚证的现状及思考[J]. 时珍国医国药, 2009, 20(7):1809-1810. |
SONG J, LI Z, YU H F. The Status and consideration of study on kidney-Yang deficiency syndrome through hypothalamic-pituitary-thyroid axis[J]. Lishizhen Medicine And Materia Medica Research, 2009, 20(7):1809-1810. doi: 10.3969/j.issn.1008-0805.2009.07.131. | |
[11] | 杨裕华, 李震. 补肾中药对肾阳虚动物模型影响的实验研究进展[J]. 时珍国医国药, 2008, 19(1):231-233. |
YANG Y H, LI Z. Experimental research progress on the effect of Kidney-tonifying Chinese medicine on animal model of kidney-Yang deficiency[J]. Lishizhen Medicine and Materia Medica Research, 2008, 19(1):231-233. | |
[12] | 郑永平, 陈高飞, 张玲, 等. 补脾祛风方对脾虚型特应性皮炎患者血清总免疫球蛋白、嗜酸性粒细胞的影响[J]. 国际中医中药杂志, 2012, 34(5):407-408. |
ZHENG Y P, CHEN G F, ZHANG L, et al. Effects of Bupi-Qufeng decoction on serum TIgE and EOS of paitents with atopic dermatitis belonging to spleen deficiency syndrome[J]. International Journal of Triditional Chinese Medicine, 2012, 34(5):407-408. doi: 10.3760/cma.j.issn.1673-4246.2012.05.007. | |
[13] | 林建容, 何前松, 况时祥, 等. 补脾强力复方对实验性自身免疫性重症肌无力大鼠下丘脑CRH mRNA及蛋白表达的影响[J]. 辽宁中医杂志, 2018, 45(6):1285-1289. |
LIN J R, HE Q S, KUANG S X, et al. Effects of Compound Bupi Qiangli Decoction on expression levels of CRH mRNA gene protein in hypothalamus in experimental autoimmune myasthenia gravis rats[J]. Liaoning Journal of Traditional Chinese Medicine, 2018, 45(6):1285-1289. doi: 10.13192/j.issn.1000-1719.2018.06.053. | |
[14] | CETIN H, WEBSTER R, LIU W W, et al. Myasthenia gravis AChR antibodies inhibit function of rapsyn-clustered AChRs[J]. J Neurol Neurosurg Psychiatry, 2020, 91(5):526-532. doi: 10.1136/jnnp-2019-322640. |
[15] | GERTEL-LAPTER S, MIZRACHI K, BERRIH-AKNIN S, et al. Impairment of regulatory T cells in myasthenia gravis:Studies in an experimental model[J]. Autoimmun Rev, 2013, 12(9):894-903. doi: 10.1016/j.autrev.2013.03.009. |
[16] | XU W H, ZHANG A M, REN M S, et al. Changes of Treg-associated molecules on CD4+CD25+Treg cells in myasthenia gravis and effects of immunosuppressants[J]. J Clin Immunol, 2012, 32(5):975-983. doi: 10.1007/s10875-012-9685-0. |
[17] | GERTEL-LAPTER S, MIZRACHI K, BERRIH-AKNIN S, et al. Impairment of regulatory T cells in myasthenia gravis:Studies in an experimental model[J]. Autoimmun Rev, 2013, 12(9):894-903. doi: 10.1016/j.autrev.2013.03.009. |
[18] | KNIOTEK M, ZYCH M, ROSZCZYK A, et al. Decreased production of TNF-α and IL-6 inflammatory cytokines in non-pregnant idiopathic RPL women immunomodulatory effect of sildenafil citrate on the cellular response of idiopathic RPL women[J]. J Clin Med, 2021, 10(14):3115. doi: 10.3390/jcm10143115. |
[19] | KNEZEVIC J, STARCHL C, TMAVA BERISHA A, et al. Thyroid-gut-axis:How does the microbiota influence thyroid function?[J]. Nutrients, 2020, 12(6):1769. doi: 10.3390/nu12061769. |
[20] | CHAHARDOLI R, SABOOR-YARAGHI A A, AMOUZEGAR A, et al. Can supplementation with vitamin D modify thyroid autoantibodies(Anti-TPO Ab,Anti-Tg Ab)and thyroid profile (T3,T4,TSH) in Hashimoto's thyroiditis? A double blind,randomized clinical trial[J]. Horm Metab Res, 2019, 51(5):296-301. doi: 10.1055/a-0856-1044. |
[21] | 李艳, 何前松, 况时祥, 等. HPA轴损伤对实验性重症肌无力大鼠易感性的影响[J]. 中国中医基础医学杂志, 2019, 25(1):63-67. |
LI Y, HE Q S, KUANG S X, et al. Effect of HPA axis injury on susceptibility to experimental myasthenia gravis in rats[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2019, 25(1):63-67. | |
[22] | 刘云, 郝洪军, 高枫. 伴甲状腺疾病重症肌无力患者的临床特点[J]. 中国神经免疫学和神经病学杂志, 2021, 28(2):115-119. |
LIU Y, HAO H J, GAO F. The clinical features of myasthenia gravis associated with thyroid disease[J]. Chinese Journal of Neuroimmunology and Neurology, 2021, 28(2):115-119. doi: 10.3969/j.issn.1006-2963.2021.02.004. | |
[23] | MÜLLER-FIELITZ H, SCHWANINGER M. The Role of tanycytes in the hypothalamus-pituitary-thyroid axis and the possibilities for their genetic manipulation[J]. Exp Clin Endocrinol Diabetes, 2020, 128(6/7):388-394. doi: 10.1055/a-1065-1855. |
[1] | WANG Kai, GAO Wei. Role of donor specific regulatory T cells in immune tolerance after liver transplantation [J]. Tianjin Medical Journal, 2019, 47(11): 1196-1200. |
[2] | WANG Ling, ZHAO Pengfei, LYU Yipin, GUO Jingyi, SUN Ming, WU Huizhe, WEI Minjie. The effects of tumor microenvironment on the development and progression of breast cancer [J]. Tianjin Med J, 2016, 44(4): 413-417. |
[3] | . Analysis of CD4+CD25+CD127low regulatory T cells in the peripheral blood of hepatocellular carcinoma patients with HBV infection [J]. , 2014, 42(6): 530-532 . |
[4] | . Clinical value of electrochemiluminescence immunoassay for measuring Thyrotropin receptor antibody [J]. , 2012, 40(8): 0-0 . |
[5] | . The study about expression and significance of CD4 + CD25 + T cell in different liver tumor [J]. , 2012, 40(4): 337-339 . |
[6] | . TRAb change and prognosis of Graves disease in adolescents before and after 131I therapy [J]. , 2010, 38(12): 1099-1100 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||