Tianjin Medical Journal ›› 2022, Vol. 50 ›› Issue (11): 1165-1170.doi: 10.11958/20220320
• Experimental Research • Previous Articles Next Articles
DU Wei1(), WU Silan2, YANG Xue2, CHEN Hui2, YE Lan1,△(
)
Received:
2022-02-28
Revised:
2022-04-10
Published:
2022-11-15
Online:
2022-11-11
Contact:
YE Lan
E-mail:361521169@qq.com;frogyl266@163.com
DU Wei, WU Silan, YANG Xue, CHEN Hui, YE Lan. Effects of tripterygium hypoflaucum (Levl.) hutch polysaccharide on the AMPK/mTOR signal pathway in mice with exercise-induced fatigue[J]. Tianjin Medical Journal, 2022, 50(11): 1165-1170.
CLC Number:
基因名称 | 引物序列(5'→3') | 产物大小(bp) |
---|---|---|
AMPK | 上游:GTTGCGGATGCTATGGGT | 101 |
下游:GTCCGGCCTCTGGTTTC | ||
mTOR | 上游:CTGGGGCTGCTTTCTGT | 119 |
下游:ACGGTTTTCTGCCTCTTGT | ||
GLUT-4 | 上游:GTTGCGGATGCTATGGGT | 104 |
下游:GTCCGGCCTCTGGTTTC | ||
GAPDH | 上游:GGATGCTGCCCTTACCC | 101 |
下游:GTTCACACCGACCTTCACC |
Tab.1 Primer sequence for qPCR
基因名称 | 引物序列(5'→3') | 产物大小(bp) |
---|---|---|
AMPK | 上游:GTTGCGGATGCTATGGGT | 101 |
下游:GTCCGGCCTCTGGTTTC | ||
mTOR | 上游:CTGGGGCTGCTTTCTGT | 119 |
下游:ACGGTTTTCTGCCTCTTGT | ||
GLUT-4 | 上游:GTTGCGGATGCTATGGGT | 104 |
下游:GTCCGGCCTCTGGTTTC | ||
GAPDH | 上游:GGATGCTGCCCTTACCC | 101 |
下游:GTTCACACCGACCTTCACC |
组别 | 第1天 | 第4天 | 第7天 | 第10天 | 第13天 |
---|---|---|---|---|---|
静止对照组 | 20.1±0.6 | 24.0±1.2 | 27.3±1.9 | 30.0±2.3 | 31.4±2.0 |
疲劳对照组 | 20.1±0.8 | 24.1±1.4 | 27.4±2.0 | 30.1±2.2 | 31.4±2.4 |
疲劳+单糖组 | 20.1±0.7 | 24.1±1.0 | 27.3±1.6 | 29.1±1.4 | 29.8±1.4 |
疲劳+火把花根多糖组 | 20.1±0.7 | 23.5±1.1 | 25.8±1.5 | 27.5±1.9 | 28.1±1.7a |
F | 0.003 | 0.357 | 1.141 | 2.119 | 4.192* |
Tab.2 Comparison of body mass of mice at different time points between the four groups
组别 | 第1天 | 第4天 | 第7天 | 第10天 | 第13天 |
---|---|---|---|---|---|
静止对照组 | 20.1±0.6 | 24.0±1.2 | 27.3±1.9 | 30.0±2.3 | 31.4±2.0 |
疲劳对照组 | 20.1±0.8 | 24.1±1.4 | 27.4±2.0 | 30.1±2.2 | 31.4±2.4 |
疲劳+单糖组 | 20.1±0.7 | 24.1±1.0 | 27.3±1.6 | 29.1±1.4 | 29.8±1.4 |
疲劳+火把花根多糖组 | 20.1±0.7 | 23.5±1.1 | 25.8±1.5 | 27.5±1.9 | 28.1±1.7a |
F | 0.003 | 0.357 | 1.141 | 2.119 | 4.192* |
组别 | 第1天 | 第4天 | 第7天 | 第10天 | 第13天 |
---|---|---|---|---|---|
静止对照组 | 9.50±1.25 | 12.00±0.90 | 12.42±0.80 | 12.67±0.78 | 12.00±0.82 |
疲劳对照组 | 9.37±0.70 | 11.73±0.70 | 12.77±0.91 | 12.73±0.74 | 12.17±0.35 |
疲劳+单糖组 | 9.40±1.04 | 12.33±0.91 | 12.60±0.79 | 12.68±1.12 | 11.80±0.66 |
疲劳+火把花 根多糖组 | 9.50±0.95 | 12.50±0.89 | 12.37±1.12 | 12.50±1.48 | 12.03±0.60 |
F | 0.014 | 0.483 | 0.115 | 0.026 | 0.174 |
Tab.3 Comparison of food intake of mice at different time points between the four groups
组别 | 第1天 | 第4天 | 第7天 | 第10天 | 第13天 |
---|---|---|---|---|---|
静止对照组 | 9.50±1.25 | 12.00±0.90 | 12.42±0.80 | 12.67±0.78 | 12.00±0.82 |
疲劳对照组 | 9.37±0.70 | 11.73±0.70 | 12.77±0.91 | 12.73±0.74 | 12.17±0.35 |
疲劳+单糖组 | 9.40±1.04 | 12.33±0.91 | 12.60±0.79 | 12.68±1.12 | 11.80±0.66 |
疲劳+火把花 根多糖组 | 9.50±0.95 | 12.50±0.89 | 12.37±1.12 | 12.50±1.48 | 12.03±0.60 |
F | 0.014 | 0.483 | 0.115 | 0.026 | 0.174 |
组别 | 第1天 | 第4天 | 第7天 | 第10天 | 第13天 |
---|---|---|---|---|---|
静止对照组 | 11.6±0.6 | 14.8±0.8 | 16.1±0.6 | 14.9±0.9 | 13.3±0.7 |
疲劳对照组 | 11.7±0.9 | 15.2±0.4 | 15.9±0.4 | 15.0±0.2 | 13.1±0.4 |
疲劳+单糖组 | 12.0±0.7 | 15.2±0.4 | 16.2±0.7 | 15.0±0.7 | 13.2±0.9 |
疲劳+火把花根多糖组 | 12.1±0.2 | 14.8±0.9 | 15.8±0.5 | 14.9±0.9 | 13.4±0.3 |
F | 0.354 | 0.313 | 0.297 | 0.015 | 0.173 |
Tab.4 Comparison of water consumption of mice at different time points between the four groups
组别 | 第1天 | 第4天 | 第7天 | 第10天 | 第13天 |
---|---|---|---|---|---|
静止对照组 | 11.6±0.6 | 14.8±0.8 | 16.1±0.6 | 14.9±0.9 | 13.3±0.7 |
疲劳对照组 | 11.7±0.9 | 15.2±0.4 | 15.9±0.4 | 15.0±0.2 | 13.1±0.4 |
疲劳+单糖组 | 12.0±0.7 | 15.2±0.4 | 16.2±0.7 | 15.0±0.7 | 13.2±0.9 |
疲劳+火把花根多糖组 | 12.1±0.2 | 14.8±0.9 | 15.8±0.5 | 14.9±0.9 | 13.4±0.3 |
F | 0.354 | 0.313 | 0.297 | 0.015 | 0.173 |
组别 | n | 疲劳转棒时间 | 力竭游泳时间 | |
---|---|---|---|---|
第6天 | 第13天 | |||
疲劳对照组 | 6 | 2.74±1.10 | 2.63±1.45 | 10.2±3.4 |
疲劳+单糖组 | 6 | 2.66±1.05 | 2.84±1.76 | 14.0±3.3 |
疲劳+火把花根多糖组 | 6 | 4.12±0.96 | 10.58±2.36a | 24.2±4.8a |
F | 3.737 | 34.268** | 20.512** |
Tab.5 Comparison of fatigue rotating rod and weight-bearing swimming time of mice between the three groups
组别 | n | 疲劳转棒时间 | 力竭游泳时间 | |
---|---|---|---|---|
第6天 | 第13天 | |||
疲劳对照组 | 6 | 2.74±1.10 | 2.63±1.45 | 10.2±3.4 |
疲劳+单糖组 | 6 | 2.66±1.05 | 2.84±1.76 | 14.0±3.3 |
疲劳+火把花根多糖组 | 6 | 4.12±0.96 | 10.58±2.36a | 24.2±4.8a |
F | 3.737 | 34.268** | 20.512** |
组别 | n | TG | GLU |
---|---|---|---|
静止对照组 | 6 | 0.67±0.11 | 6.33±1.52 |
疲劳对照组 | 6 | 1.08±0.36a | 3.35±1.11a |
疲劳+单糖组 | 6 | 1.05±0.13a | 2.75±1.08a |
疲劳+火把花根多糖组 | 6 | 1.06±0.15a | 1.40±0.40ab |
F | 5.111** | 21.405** |
Tab.6 Comparison of serum levels of TG and GLU between the four groups of mice
组别 | n | TG | GLU |
---|---|---|---|
静止对照组 | 6 | 0.67±0.11 | 6.33±1.52 |
疲劳对照组 | 6 | 1.08±0.36a | 3.35±1.11a |
疲劳+单糖组 | 6 | 1.05±0.13a | 2.75±1.08a |
疲劳+火把花根多糖组 | 6 | 1.06±0.15a | 1.40±0.40ab |
F | 5.111** | 21.405** |
组别 | AMPK mRNA | mTOR mRNA | GLUT-4 mRNA |
---|---|---|---|
静止对照组 | 1.13±0.59 | 1.18±0.62 | 1.09±0.50 |
疲劳对照组 | 1.34±0.57 | 1.14±0.90 | 1.13±0.83 |
疲劳+单糖组 | 1.51±0.51 | 1.57±0.87 | 1.08±0.28 |
疲劳+火把花根多糖组 | 2.20±0.82ab | 2.62±0.95ab | 2.90±0.58ab |
F | 3.181* | 4.007* | 14.381** |
Tab.7 The relative expression levels of AMPK, mTOR and GLUT-4 mRNA in gastrocnemius muscle of mice after weight-bearing swimming in each group
组别 | AMPK mRNA | mTOR mRNA | GLUT-4 mRNA |
---|---|---|---|
静止对照组 | 1.13±0.59 | 1.18±0.62 | 1.09±0.50 |
疲劳对照组 | 1.34±0.57 | 1.14±0.90 | 1.13±0.83 |
疲劳+单糖组 | 1.51±0.51 | 1.57±0.87 | 1.08±0.28 |
疲劳+火把花根多糖组 | 2.20±0.82ab | 2.62±0.95ab | 2.90±0.58ab |
F | 3.181* | 4.007* | 14.381** |
[1] | 王爱霞, 崔胜文, 丁玉婵. 霍山石斛运动饮料研制及其抗疲劳功能研究[J]. 食品安全质量检测学报, 2022, 13(1):248-253. |
WANG A X, CUI S W, DING Y C. Study on the development of dendrobium huoshanense sprorts drink and its anti-fatigue function[J]. Journal of Food Safety & Quality, 2022, 13(1):248-253. | |
[2] | VAN'T LEVEN M, ZIELHUIS G A, VAN DER MEER J W, et al. Fatigue and chronic fatigue syndrome-like complaints in the general population[J]. European Journal of Public Health, 2010, 20(3):251-257. doi:10.1093/eurpub/ckp113. |
[3] | 伍侨, 高静, 柏丁兮, 等. 中国人群慢性疲劳综合征患病率的Meta分析[J]. 右江医学, 2020, 48(10):727-735. |
WU Q, GAO J, BAI D X, et al. Prevalence of chronic fatigue syndrome in China:A meta-analysis[J]. Youjiang Medical Journal, 2020, 48(10):727-735. doi:10.3969/j.issn.1003-1383.2020.10.002. | |
[4] | LUO C, XU X, WEI X, et al. Natural medicines for the treatment of fatigue:Bioactive components,pharmacology,and mechanisms[J]. Pharmacological Research, 2019, 148:104409. doi:10.1016/j.phrs.2019.104409. |
[5] | ZHANG L J, FU M, CHEN J L, et al. Supplementation with embryo chicken egg extract improves exercise performance and exerts anti-fatigue effects via AMPK/mTOR signalling pathway in mice[J]. J Sci Food Agric, 2021, 101(4):1411-1418. doi:10.1002/jsfa.10754. |
[6] | KJØBSTED R, HINGST J R, FENTZ J, et al. AMPK in skeletal muscle function and metabolism[J]. The FASEB Journal, 2018, 32(4):1741-1777. doi:10.1096/fj. 201700442R. |
[7] | ZHOU S S, JIANG J G. Anti-fatigue effects of active ingredients from traditional Chinese Medicine:A review[J]. Curr Med Chem, 2019, 26(10):1833-1848. doi:10.2174/0929867324666170414164607. |
[8] | ZHANG C J, GUO J Y, CHENG H, et al. Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus[J]. Int J Biol Macromol, 2020, 151:855-860. doi:10.1016/j.ijbiomac.2020.02.147. |
[9] | FENG Q, SI Y, ZHU L L, et al. Anti-inflammatory effects of a SERP 30 polysaccharide from the residue of Sarcandra glabra against lipopolysaccharide-induced acute respiratory distress syndrome in mice[J]. J Ethnopharmacol, 2022, 293:115262. doi:10.1016/j.jep.2022.115262. |
[10] | 郑传痴, 杨艳, 韦余, 等. 金丝桃苷对小鼠的抗疲劳作用及机制研究[J]. 食品工业科技, 2021, 42(23):350-355. |
ZHENG C C, YAN Y, WEI Y, et al. Study on the effects and mechanism of Hyperoside on anti-fatigue in mice[J]. Science and Technology of Food Industry, 2021, 42(23):350-355. doi:10.13386/j.issn1002-0306.2021010227. | |
[11] | YANG Z, SUNIL C, JAYACHANDRAN M, et al. Anti-fatigue effect of aqueous extract of hechong(Tylorrhynchus heterochaetus)via AMPK linked pathway[J]. Food Chem Toxicol, 2020, 135:111043. doi:10.1016/j.fct.2019.111043. |
[12] | 井宏颖, 吕克宁, 宋晓晨, 等. 地黄饮子对运动性疲劳小鼠运动能力的影响[J]. 湖南中医药大学学报, 2021, 41(1):34-38. |
JING H Y, LV K N, SONG X C, et al. Effect of radix rehmanniae decoction on exercise ability in exercise-induced fatigue mice[J]. Journal of Traditional Chinese Medicine University of Hunan, 2021, 41(1):34-38. doi:10.3969/j.issn.1674-070X.2021.01.007. | |
[13] | YU J, LAYBUTT D R, KIM L J, et al. Exercise-induced benefits on glucose handling in a model of diet-induced obesity are reduced by concurrent nicotinamide mononucleotide[J]. AJP Endocrinology and Metabolism, 2021, 321(1):176-189. doi:10.1152/ajpendo.00446.2020. |
[14] | TIAN L, HU T, ZHANG S S, et al. A comparative study on relieving exercise-induced fatigue by inhalation of different citrus essential oils[J]. Molecules, 2022, 27:3239. doi:10.3390/molecules27103239. |
[15] | YIN C, FU X, CHOU J, et al. A proprietary herbal drug Young Yum Pill ameliorates chronic fatigue syndrome in mice[J]. Phytomedicine, 2021, 88:153602. doi:10.1016/j.phymed.2021.153602. |
[16] | HU B, YE C, LEUNG E L, et al. Bletilla striata oligosaccharides improve metabolic syndrome through modulation of gut microbiota and intestinal metabolites in high fat diet-fed mice[J]. Pharmacol Res, 2020, 159:104942. doi:10.1016/j.phrs.2020.104942. |
[17] | 姜宁, 张亦文, 姚彩虹, 等. 大小鼠抑郁行为实验方法概述[J]. 中国实验动物学报, 2021, 29(6):830-838. |
JIANG N, ZHANG Y W, YAO C H, et al. Overview of animal behavioral tests of depression[J]. Acta Laboratorium Animalis Scientia Sinica, 2021, 29(6):830-838. doi:10.3969/j.issn.1005-4847.2021.06.016. | |
[18] | 董碧莲, 蔡延渠, 吕莉, 等. 中药多糖增强免疫,抗疲劳作用的研究进展[J]. 中成药, 2019, 41(5):1119-1124. |
DONG B L, CAI Y Q, LV L, et al. Research progress of traditional Chinese medicine polysaccharide in enhancing immunity and anti fatigue[J]. Chinese Traditional Patent Medicine, 2019, 41(5):1119-1124. doi:10.3969/j.issn.1001-1528.2019.05.032. | |
[19] | OSMAN W, MOHAMED S. Standardized morinda citrifolia L. and Morinda elliptica L. leaf extracts alleviated fatigue by improving glycogen storage and lipid/carbohydrate metabolism[J]. Phytother Res, 2018, 32(10):2078-2085. doi:10.1002/ptr.6151. |
[20] | MORALES-ALAMO D, CALBET J A L. AMPK signaling in skeletal muscle during exercise:Role of reactive oxygen and nitrogen species[J]. Free Radic Biol Med, 2016, 98(9):68-77. doi:10.1016/j.freeradbiomed.2016.01.012. |
[21] | GONZÁLEZ A, HALL M N, LIN S C, et al. AMPK and TOR:The Yin and Yang of cellular nutrient sensing and growth control[J]. Cell Metab, 2020, 31(3):472-492. doi:10.1016/j.cmet.2020.01.015. |
[22] | 张新颖, 毛景东, 杨晓燕, 等. AMPK/mTOR信号通路的研究进展[J]. 微生物学杂志, 2019, 39(3):109-116. |
ZHANG X Y, MAO J D, YANG X Y. Advances in AMPK/mTOR signaling path[J]. Journal of Microbiology, 2019, 39(3):109-116. doi:10.3969/j.issn.1005-7021.2019.03.015. | |
[23] | LI J, KNUDSEN J R, HENRIQUEZ-OLGUIN C, et al. AXIN1 knockout does not alter AMPK/mTORC1 regulation and glucose metabolism in mouse skeletal muscle[J]. The Journal of Physiology, 2021, 599(12):3081-3100. doi:10.1113/JP281187. |
[1] | WANG Junyi, LI Chen, WU Xinyue, DING Xinyu, WAN Chunxiao. Effect and mechanism of early exercise intervention on cerebral nerve myelin in rats with cerebral ischemia [J]. Tianjin Medical Journal, 2024, 52(6): 589-594. |
[2] | LIN Yao, LIU Congna, WANG Shixia, ZHANG Zhiyong. Effect of acacetin on lipopolysaccharide induced apoptosis of dental pulp cells by regulating the HMGB1/TLR4 signaling pathway [J]. Tianjin Medical Journal, 2024, 52(12): 1238-1243. |
[3] | CHEN Hao, LI Rui, YI Fei, ZHOU Li, CHEN Jiaqi, ZHU Fan, GUAN Chengyan, WU Na. Construction of mouse intestinal organoid inflammation model [J]. Tianjin Medical Journal, 2024, 52(1): 16-21. |
[4] | ZHI Qiang, ZHANG Nan, FENG Guangling, SUN Weiyi, ZHAO Yuanyuan, YANG Shifa. Study on the mechanism of astragalus polysaccharides regulating autophagy of colorectal cancer cells based on PI3K/Akt/mTOR signaling pathway [J]. Tianjin Medical Journal, 2023, 51(3): 240-245. |
[5] | KANG Jingjing, CAO Xiang. Lycorine inhibited LPS-induced primary microglial inflammatory response via TLR4/NF-κB signaling pathway [J]. Tianjin Medical Journal, 2022, 50(9): 897-901. |
[6] | LI Ying, ZHANG Jie, YU Hongyan, YANG Ling, DI Fusheng. Status of cardiopulmonary fitness and its influencing factors in patients with type 2 diabetes mellitus complicated with fatty liver disease [J]. Tianjin Medical Journal, 2022, 50(12): 1320-1323. |
[7] | DONG Chao, LI Huayu, OU Haojie, SUN Jia, ZHANG Luyong, LIU Bing△. Fenofibrate improves acute lung injury induced by lipopolysaccharide [J]. Tianjin Medical Journal, 2022, 50(1): 59-66. |
[8] | SHAO Rui, LI Dai, HAN Zhao-li, ZHANG Ming-yi, LEI Ping. Effects of individualized rehabilitation training based on comprehensive geriatric assessment on cognitive function and risk prevention of patients with Alzheimer's disease [J]. Tianjin Medical Journal, 2021, 49(8): 847-851. |
[9] | ZHU Bi-kang, SHU Ke-gang, XU Wei-hua, QU Yang-yang, PANG Cong, LUO Shi-xing. In vivo and in vitro study on the therapeutic effects of aloe polysaccharides on osteoarthritis in rats #br# [J]. Tianjin Medical Journal, 2021, 49(6): 570-576. |
[10] | LUO Yan-fen, ZHUANG Qi-zhen, ZHANG Xuan, CHEN Cha, LIU Yang, YAN Xing-xing, XIAO Qian, LI You-qiang. 3-O-C12-HSL hampers the maturation of Mo-DCs by inhibiting the expression of lncRNA CD48-AS and CD48 [J]. Tianjin Medical Journal, 2021, 49(12): 1233-1239. |
[11] | LI Xin, LIN Ming-zhe, ZHAO Jiu-da. Effects of quercetin on p53/AMPK/mTOR signaling pathway related to gastric cancer [J]. Tianjin Medical Journal, 2021, 49(11): 1143-1147. |
[12] | YANG Bin, HUANG Jun-qing, MENG Qing-liang, YUAN Wei-qi, LIANG Xin. Effects of total flavonoids of chrysanthemum indicum on inflammatory response and autophagy of HK-2 cells induced by lipopolysaccharide based on NLRP3-IL-1β-NF-κB signal axis [J]. Tianjin Medical Journal, 2020, 48(2): 81-87. |
[13] | DAI Wan-wu, HUANG Zu-quan, ZHANG Bo, DU Yong-jun, LI Xing-yan. The protective effect of alpinetin on chondrocyte damage induced by lipopolysaccharide [J]. Tianjin Medical Journal, 2020, 48(12): 1137-1141. |
[14] | GE Guang-quan, ZHAO Feng, CHEN Dao-hu, SHI Zhen-su, CHEN Ze-lun, WANG Tian-guang, HE Shu-wu, WEI Yi-zhen. The role and mechanism of Akt-Kv4.3-CaMKII in aerobic exercise inhibited pressure overload-induced cardiac hypertrophy [J]. Tianjin Medical Journal, 2020, 48(1): 38-44. |
[15] | CHEN Xu, WANG Xiao-wu, JIANG Li-qing, MA Ji-peng, FENG Jian-yu. The protective effect and mechanism of silibinin on cardiac injury induced by endotoxemia [J]. Tianjin Medical Journal, 2019, 47(8): 794-799. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||