Tianjin Medical Journal ›› 2022, Vol. 50 ›› Issue (12): 1264-1269.doi: 10.11958/20220987
• Cell and Molecular Biology • Previous Articles Next Articles
MA Zhi1(), WANG Xinshuang1, LIU Yue2, WEI Liping2, QI Xin2,△(
)
Received:
2022-06-24
Revised:
2022-07-22
Published:
2022-12-15
Online:
2022-12-30
Contact:
QI Xin
E-mail:476997137@qq.com;qixinx2011@126.com
MA Zhi, WANG Xinshuang, LIU Yue, WEI Liping, QI Xin. The protective mechanism of differential isomers of glycyrrhetinic acid on cisplatin-induced H9c2 cardiomyocyte injury[J]. Tianjin Medical Journal, 2022, 50(12): 1264-1269.
CLC Number:
组别 | 线粒体足长度 | 具有网状结构的线粒体数量 |
---|---|---|
对照组 | 1.00±0.20 | 0.94(0.75,1.22) |
CDDP组 | 0.53±0.03a | 0.38(0.38,0.47)a |
18α-GA组 | 0.79±0.07b | 0.75(0.75,0.84)b |
18β-GA组 | 0.87±0.21b | 0.75(0.75,0.75)b |
F或H | 34.748** | 13.320** |
Tab.1 Comparison of mitochondrial foot length and number of mitochondria with reticular structure between the four groups
组别 | 线粒体足长度 | 具有网状结构的线粒体数量 |
---|---|---|
对照组 | 1.00±0.20 | 0.94(0.75,1.22) |
CDDP组 | 0.53±0.03a | 0.38(0.38,0.47)a |
18α-GA组 | 0.79±0.07b | 0.75(0.75,0.84)b |
18β-GA组 | 0.87±0.21b | 0.75(0.75,0.75)b |
F或H | 34.748** | 13.320** |
组别 | C-Caspase3 | Bcl-2/Bax | Cyt-c |
---|---|---|---|
对照组 | 1.06±0.40 | 1.00±0.15 | 0.97±0.41 |
CDDP组 | 2.15±0.40a | 0.50±0.04a | 2.66±0.22a |
18α-GA组 | 1.30±0.28b | 0.97±0.18b | 1.11±0.25b |
18β-GA组 | 1.30±0.35b | 0.88±0.09b | 0.57±0.04b |
F | 10.321** | 9.768** | 36.039** |
Tab.2 Comparison of protein expression levels of C-Caspase3, Bcl-2/Bax and Cyt-c between the four groups
组别 | C-Caspase3 | Bcl-2/Bax | Cyt-c |
---|---|---|---|
对照组 | 1.06±0.40 | 1.00±0.15 | 0.97±0.41 |
CDDP组 | 2.15±0.40a | 0.50±0.04a | 2.66±0.22a |
18α-GA组 | 1.30±0.28b | 0.97±0.18b | 1.11±0.25b |
18β-GA组 | 1.30±0.35b | 0.88±0.09b | 0.57±0.04b |
F | 10.321** | 9.768** | 36.039** |
[1] | DE BOER R A, HULOT J S, TOCCHETTI C G, et al. Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association(HFA)of the European Society of Cardiology(ESC)[J]. Eur J Heart Fail, 2020, 22(12):2272-2289. doi:10.1002/ejhf.2029. |
[2] | HERRMANN J, LÓPEZ-FERNÁNDEZ T, LYON A R. Year in cardiovascular medicine:Cardio-oncology 2020-21[J]. Eur Heart J, 2022:ehab891. doi:10.1093/eurheartj/ehab891. |
[3] | HEIDARI S, MEHRI S, HOSSEINZADEH H. The genus Glycyrrhiza (Fabaceae family)and its active constituents as protective agents against natural or chemical toxicities[J]. Phytother Res, 2021, 35(12):6552-6571. doi:10.1002/ptr.7238. |
[4] | 金敏, 吴红金. 甘草次酸对心肌缺血再灌注损伤的影响[J]. 中国药学杂志, 2018, 53(5):359-363. |
JIN M, WU H J. Effect of glycyrrhetinic acid on myocardial ischemia reperfusion injury[J]. Chin Pharm J, 2018, 53(5):359-363. doi:10.11669/cpj.2018.05.008. | |
[5] | PARISELLA M L, ANGELONE T, GATTUSO A, et al. Glycyrrhizin and glycyrrhetinic acid directly modulate rat cardiac performance[J]. J Nutr Biochem, 2012, 23(1):69-75. doi:10.1016/j.jnutbio.2010.10.011. |
[6] | HAN J, SU G H, WANG Y H, et al. 18β-glycyrrhetinic acid improves cardiac diastolic function by attenuating intracellular calcium overload[J]. Curr Med Sci, 2020, 40(4):654-661. doi:10.1007/s11596-020-2232-y. |
[7] | 颜苗, 李兰芳, 李焕德. 甘草酸、甘草次酸18位差向异构体比较研究的进展[J]. 中药新药与临床药理, 2010, 21(5):562-566. |
YAN M, LI L F, LI H D. Progress in the comparative study of 18 - position differential isomers of glycyrrhizic acid and glycyrrhetinic acid[J]. Traditional Chinese Drug Research & Clinical Pharmacology, 2010, 21(5):562-566. doi:10.19378/j.issn.1003-9783.2010.05.036. | |
[8] | 丁楠, 高晓黎. 18α-甘草酸和18β-甘草酸差向异构体的比较研究概况[J]. 中国现代应用药学, 2011, 28(S1):1312-1315. |
DING N, GAO X L. The comparative study of 18α-glycyrrhizic acid and 18β-glycyrrhizic acid isomers[J]. Chinese Journal of Modern Applied Pharmacy, 2011, 28(S1):1312-1315. doi:10.13748/j.cnki.issn1007-7693.2011.s1.005. | |
[9] | HERRMANN J, LENIHAN D, ARMENIAN S, et al. Defining cardiovascular toxicities of cancer therapies:An International Cardio-Oncology Society(IC-OS)consensus statement[J]. Eur Heart J, 2022, 43(4):280-299. doi:10.1093/eurheartj/ehab674. |
[10] | KUBOTA S, HARA H, HIROI Y. Current status and future perspectives of onco-cardiology: Importance of early detection and intervention for cardiotoxicity, and cardiovascular complication of novel cancer treatment[J]. Glob Health Med, 2021, 3(4):214-225. doi:10.35772/ghm.2021.01024. |
[11] | WANG L, ZHANG Y, WAN H, et al. Glycyrrhetinic acid protects H9c2 cells from oxygen glucose deprivation-induced injury through the PI3K/AKt signaling pathway[J]. J Nat Med, 2017, 71(1):27-35. doi:10.1007/s11418-016-1023-z. |
[12] | BAŞAK TÜRKMEN N, AŞKIN ÖZEK D, TAŞLIDERE A, et al. Protective role of Diospyros lotus L. in cisplatin-induced cardiotoxicity:Cardiac damage and oxidative stress in rats[J]. Turk J Pharm Sci, 2022, 19(2):132-137. doi:10.4274/tjps.galenos.2021.84555. |
[13] | MORELLI M B, BONGIOVANNI C, DA PRA S, et al. Cardiotoxicity of anticancer drugs:Molecular mechanisms and strategies for cardioprotection[J]. Front Cardiovasc Med, 2022, 9:847012. doi:10.3389/fcvm.2022.847012. |
[14] | BAYRAK S, AKTAŞ S, ALTUN Z, et al. Antioxidant effect of acetyl-l-carnitine against cisplatin-induced cardiotoxicity[J]. J Int Med Res, 2020, 48(8):300060520951393. doi:10.1177/0300060520951393. |
[15] | CHOI Y M, KIM H K, SHIM W, et al. Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ROS generation[J]. PLoS One, 2015, 10(8):e0135083. doi:10.1371/journal.pone.0135083. |
[16] | 何苗, 李耀伟, 王志琪, 等. 基于细胞线粒体能量代谢研究甘草次酸拮抗乌头碱的心肌毒性作用[J]. 湖南中医药大学学报, 2021, 41(11):1650-1656. |
HE M, LI Y W, WANG Z Q, et al. Glycyrrhetinic acid against the cardiotoxicity of aconitine based on mitochondrial energy metabolism[J]. Journal of Traditional Chinese Medicine University of Hunan, 2021, 41(11):1650-1656. doi:10.3969/j.issn.1674-070X.2021.11.002. | |
[17] | 邢燕, 历飞, 林大勇, 等. 甘草次酸通过PI3K-AKT途径抑制H2O2所致大鼠心肌细胞氧化损伤[J]. 现代生物医学进展, 2018, 18(6):1044-1049. |
XING Y, LI F, LIN D Y, et al. Glycyrrhetinic acid decreases H2O2-induced oxidative injury of H9C2 cells through PI3K-AKT pathway[J]. Progress in Modern Biomedicine, 2018, 18(6):1044-1049. doi:10.13241/j.cnki.pmb.2018.06.009. | |
[18] | ZHAO L. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction[J]. Anatol J Cardiol, 2019, 22(5):232-239. doi:10.14744/AnatolJCardiol.2019.83710. |
[19] | VARGA Z V, FERDINANDY P, LIAUDET L, et al. Drug-induced mitochondrial dysfunction and cardiotoxicity[J]. Am J Physiol Heart Circ Physiol, 2015, 309(9):H1453-1467. doi:10.1152/ajpheart.00554.2015 |
[20] | MA W, WEI S, ZHANG B, et al. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity[J]. Front Cell Dev Biol, 2020, 8:434. doi:10.3389/fcell.2020.00434. |
[1] | WANG Xinshuang, AN Yajuan, GUAN Xiuju, LI Jiao, LIU Yue, WEI Liping, QI Xin. Study of magnesium isoglycyrrhizinate in ameliorating cisplatin induced myocardial injury in rats [J]. Tianjin Medical Journal, 2024, 52(8): 809-814. |
[2] | QIN Hanlin, HU Changlu, ZHAO Yamei, NIU Weina. Effect and safety of quadruple regimen in preventing multi-day cisplatin-based chemotherapy induced nausea and vomiting [J]. Tianjin Medical Journal, 2024, 52(8): 835-839. |
[3] | YUAN Man, FENG Zihan, XIE Min, WANG Bojun. Mechanism of emodin modulating pain behavior in mouse model of osteoarthritis [J]. Tianjin Medical Journal, 2024, 52(6): 572-577. |
[4] | XIE Youcheng, WANG Fei, XU Jin, YU Xiaohui. Research progress of SIRT1 in the pathogenesis of diabetic cardiomyopathy [J]. Tianjin Medical Journal, 2024, 52(4): 443-448. |
[5] | XIANG Jinjie, LYU Maoxin, WANG Mengyue, ZHANG Kun, LI Hao. Molecular mechanisms of Ca2+-induced pyroptosis and adhesion changes of HK-2 cells in the formation of calcium-containing kidney stones [J]. Tianjin Medical Journal, 2024, 52(3): 250-255. |
[6] | YI Na, XIAO Wen, TIAN Yuan, YUAN Lili. Mechanism of BMAL1 attenuating H2O2-induced cardiomyocyte injury [J]. Tianjin Medical Journal, 2024, 52(2): 119-123. |
[7] | ZHANG Guixian, LIU Dawei, LI Wenchang, CAI Jun, ZONG Wenhui, LIU Hongbin, ZHAO Xiumei. Mechanism study of BOC2 alleviating SAP inflammatory damage by inhibiting N-formyl peptide/formyl peptide receptor pathway [J]. Tianjin Medical Journal, 2024, 52(10): 1031-1037. |
[8] | SHI Jiaxin, LI Nuo, YANG Yegui, FANG Wei, QIN Sina, HUANG Jingju, CHEN Menghua. Moderately elevating blood potassium concentration can improve mitochondrial function of brain tissue in cardiopulmonary resuscitation rats [J]. Tianjin Medical Journal, 2023, 51(7): 724-728. |
[9] | LI Yanping, WANG Xietao, SHI Libin, LIU Qiong. Influence of resveratrol on H2O2-induced ferroptosis in alveolar epithelial cells by regulating the Nrf2-GPX4 pathway [J]. Tianjin Medical Journal, 2023, 51(6): 568-572. |
[10] | GENG Yongzhi, YANG Li, LI Guowei, ZHANG Jintao, CHENG Xiaolei, TAN Liduan. Study on the improvement effect and mechanism of nobiletin on rats with acute kidney injury [J]. Tianjin Medical Journal, 2023, 51(5): 498-503. |
[11] | WU Qiong, LI Jinyuan, HUANG Wentao, AN Na. Effects of acacetin on proliferation, apoptosis and migration of hepatocellular carcinoma HepG2 cells and its mechanism [J]. Tianjin Medical Journal, 2023, 51(3): 235-239. |
[12] | ZHENG Junyi, ZHANG Yingying, LIU Yuanyuan, CHEN Mengying, GUO Xukun. Mechanism of FUNDC1 affacting apoptosis of H9c2 cardiomyocytes with high glucose injury by regulating mitochondrial fission [J]. Tianjin Medical Journal, 2022, 50(8): 791-795. |
[13] | YI Wanping, MA Deshou. High-intensity focused ultrasound enhances cisplatin chemotherapy sensitivity of breast cancer through TRIF-mediated ERK pathway [J]. Tianjin Medical Journal, 2022, 50(7): 698-706. |
[14] | CHEN Lixu, XIONG Jia, XIE Kun, ZHU Tingde, ZHONG Zhiying, GUAN Liang, PAN Yongping. Study on the mechanism of Fuzheng Huayu prescription drug-containing serum affecting the activation of activinA/smad signaling pathway in hepatic stellate cells [J]. Tianjin Medical Journal, 2022, 50(7): 707-712. |
[15] | LIU Chen, LIANG Qianwen, ZHAO Jiquan. The protective effect of Exendin-4 on hIAPP-induced apoptosis of pancreatic β-cells [J]. Tianjin Medical Journal, 2022, 50(6): 578-582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||