Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (4): 443-448.doi: 10.11958/20231289
• Review • Previous Articles
XIE Youcheng1,2,3,4(), WANG Fei2, XU Jin2, YU Xiaohui2,△(
)
Received:
2023-08-28
Revised:
2023-10-20
Published:
2024-04-15
Online:
2024-04-19
Contact:
△E-mail:XIE Youcheng, WANG Fei, XU Jin, YU Xiaohui. Research progress of SIRT1 in the pathogenesis of diabetic cardiomyopathy[J]. Tianjin Medical Journal, 2024, 52(4): 443-448.
CLC Number:
DCM分期 | 临床表现 |
---|---|
1期 | 心脏舒张功能异常但射血分数正常# |
2期 | 心脏收缩和舒张功能共同受损 |
3期 | 收缩期和舒张期功能障碍伴有微血管疾病/非梗阻性 冠状动脉粥样硬化症 |
4期 | 临床明显的心肌缺血/梗死引发心力衰竭 |
Tab.1 Staging of DCM
DCM分期 | 临床表现 |
---|---|
1期 | 心脏舒张功能异常但射血分数正常# |
2期 | 心脏收缩和舒张功能共同受损 |
3期 | 收缩期和舒张期功能障碍伴有微血管疾病/非梗阻性 冠状动脉粥样硬化症 |
4期 | 临床明显的心肌缺血/梗死引发心力衰竭 |
研究对象 | NCT号 | 临床 阶段 | 样本量 | 干预手段 | 研究目的 | 状态 |
---|---|---|---|---|---|---|
DCM | 04141475 | 未知 | 100 | α-硫辛酸 | 治疗前后左室射血分数变化 | 未知 |
DCM | 04083339 | Ⅲ期 | 675 | AT-001 | 心肺运动试验期间的峰值摄氧量 | 正在进行 |
DCM | 05556005 | Ⅱ期 | 60 | 曲美他嗪 | 与基线相比的变化3个月时的左心室功能 | 正在招募受试者 |
肥胖(DM/DM高风险)患者 | 01067209 | 未知 | 45 | 胃旁路手术 | 心脏功能,心肌脂肪沉积 | 正在进行 |
DCM | 04200586 | Ⅳ期 | 30 | 达格列净 | 心肌灌注储备指数变化 | 正在进行 |
EF降低的DM心力衰竭患者 | 04304560 | Ⅱ期 | 60 | 达格列净 | 达格列净对2型糖尿病患者心肌病发病率和 死亡率的影响 | 未知 |
Tab.2 Ongoing clinical trials of drugs for DCM
研究对象 | NCT号 | 临床 阶段 | 样本量 | 干预手段 | 研究目的 | 状态 |
---|---|---|---|---|---|---|
DCM | 04141475 | 未知 | 100 | α-硫辛酸 | 治疗前后左室射血分数变化 | 未知 |
DCM | 04083339 | Ⅲ期 | 675 | AT-001 | 心肺运动试验期间的峰值摄氧量 | 正在进行 |
DCM | 05556005 | Ⅱ期 | 60 | 曲美他嗪 | 与基线相比的变化3个月时的左心室功能 | 正在招募受试者 |
肥胖(DM/DM高风险)患者 | 01067209 | 未知 | 45 | 胃旁路手术 | 心脏功能,心肌脂肪沉积 | 正在进行 |
DCM | 04200586 | Ⅳ期 | 30 | 达格列净 | 心肌灌注储备指数变化 | 正在进行 |
EF降低的DM心力衰竭患者 | 04304560 | Ⅱ期 | 60 | 达格列净 | 达格列净对2型糖尿病患者心肌病发病率和 死亡率的影响 | 未知 |
[1] | SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas:Global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183:109119. doi:10.1016/j.diabres.2021.109119. |
[2] | American Diabetes Association Professional Practice Committee. Cardiovascular disease and risk management:standards of medical care in diabetes-2022[J]. Diabetes Care, 2022, 45(Suppl 1):S144-S174. doi:10.2337/dc22-S010. |
[3] | PAN K L, HSU Y C, CHANG S T, et al. The role of cardiac fibrosis in diabetic cardiomyopathy:from pathophysiology to clinical diagnostic tools[J]. Int J Mol Sci, 2023, 24(10):8604. doi:10.3390/ijms24108604. |
[4] | COSTANTINO S, MENGOZZI A, VELAGAPUDI S, et al. Treatment with recombinant Sirt1 rewires the cardiac lipidome and rescues diabetes-related metabolic cardiomyopathy[J]. Cardiovasc Diabetol, 2023, 22(1):312. doi:10.1186/s12933-023-02057-2. |
[5] | SUN C, LIANG H, ZHAO Y, et al. Jingfang Granules improve glucose metabolism disturbance and inflammation in mice with urticaria by up-regulating LKB1/AMPK/SIRT1 axis[J]. J Ethnopharmacol, 2023, 302(Pt A):115913. doi:10.1016/j.jep.2022.115913. |
[6] | YANCY C W, JESSUP M, BOZKURT B, et al. 2013 ACCF/AHA guideline for the management of heart failure:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. J Am Coll Cardiol, 2013, 62(16):e147-e239. doi:10.1016/j.jacc.2013.05.019. |
[7] | MAISCH B, ALTER P, PANKUWEIT S. Diabetic cardiomyopathy--fact or fiction?[J]. Herz, 2011, 36(2):102-115. doi:10.1007/s00059-011-3429-4. |
[8] | WANG A J, WANG S, WANG B J, et al. Epigenetic regulation associated with sirtuin 1 in complications of diabetes mellitus[J]. Front Endocrinol(Lausanne), 2021, 11:598012. doi:10.3389/fendo.2020.598012. |
[9] | FANG W J, LI X M, ZHOU X K, et al. Resveratrol improves diabetic cardiomyopathy by preventing asymmetric dimethylarginine-caused peroxisome proliferator-activated receptor-γ coactivator-1α acetylation[J]. Eur J Pharmacol, 2022, 936:175342. doi:10.1016/j.ejphar.2022.175342. |
[10] | WALDMAN M, COHEN K, YADIN D, et al. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving 'SIRT1 and PGC-1α'[J]. Cardiovasc Diabetol, 2018, 17(1):111. doi:10.1186/s12933-018-0754-4. |
[11] | DU S, SHI H, XIONG L, et al. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy[J]. Front Endocrinol(Lausanne), 2022, 13:1011669. doi:10.3389/fendo.2022.1011669. |
[12] | DAIBER A, STEVEN S, VUJACIC-MIRSKI K, et al. Regulation of vascular function and inflammation via cross talk of reactive oxygen and nitrogen species from mitochondria or NADPH oxidase-implications for diabetes progression[J]. Int J Mol Sci, 2020: 21(10):3405. doi:10.3390/ijms21103405. |
[13] | ZHANG W, CHEN R, XU K, et al. Protective effect of Xinmai'an tablets via mediation of the AMPK/SIRT1/PGC-1α signaling pathway on myocardial ischemia-reperfusion injury in rats[J]. Phytomedicine, 2023, 120:155034. doi:10.1016/j.phymed.2023.155034. |
[14] | LI K, ZHAI M, JIANG L, et al. Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 pathway[J]. Oxid Med Cell Longev, 2019: 2019:6746907. doi:10.1155/2019/6746907. |
[15] | DUAN J, YIN Y, WEI G, et al. Chikusetsu saponin IVa confers cardioprotection via SIRT1/ERK1/2 and Homer1a pathway[J]. Sci Rep, 2015, 5:18123. doi:10.1038/srep18123. |
[16] | DATTA S, JAISWAL M. Mitochondrial calcium at the synapse[J]. Mitochondrion, 2021, 59:135-153. doi:10.1016/j.mito.2021.04.006. |
[17] | DIAZ-JUAREZ J, SUAREZ J, CIVIDINI F, et al. Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia[J]. Am J Physiol Cell Physiol, 2016, 311(6):C1005-C1013. doi:10.1152/ajpcell.00236.2016. |
[18] | SUAREZ J, CIVIDINI F, SCOTT B T, et al. Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function[J]. J Biol Chem, 2018, 293(21):8182-8195. doi:10.1074/jbc.RA118.002066. |
[19] | DIA M, GOMEZ L, THIBAULT H, et al. Reduced reticulum-mitochondria Ca2+ transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy[J]. Basic Res Cardiol, 2020, 115(6):74. doi:10.1007/s00395-020-00835-7. |
[20] | GORSKI P A, JANG S P, JEONG D, et al. Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca2+-ATPase in heart failure[J]. Circ Res, 2019, 124(9):e63-e80. doi:10.1161/CIRCRESAHA.118.313865. |
[21] | VILELLA R, IZZO S, NAPONELLI V, et al. In vivo treatment with a standardized green tea extract restores cardiomyocyte contractility in diabetic rats by improving mitochondrial function through SIRT1 activation[J]. Pharmaceuticals(Basel), 2022, 15(11):1337. doi:10.3390/ph15111337. |
[22] | HUANG Q, LIU Z, YANG Y, et al. Selenium nanodots(SENDs)as antioxidants and antioxidant-prodrugs to rescue islet β cells in type 2 diabetes mellitus by restoring mitophagy and alleviating endoplasmic reticulum stress[J]. Adv Sci (Weinh), 2023, 10(19):e2300880. doi:10.1002/advs.202300880. |
[23] | AL KURY L T. Calcium homeostasis in ventricular myocytes of diabetic cardiomyopathy[J]. J Diabetes Res, 2020, 2020:1942086. doi:10.1155/2020/1942086. |
[24] | YANG S, WU M, LI X, et al. Role of endoplasmic reticulum stress in atherosclerosis and its potential as a therapeutic target[J]. Oxid Med Cell Longev, 2020, 2020:9270107. doi:10.1155/2020/9270107. |
[25] | MA S, FENG J, ZHANG R, et al. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice[J]. Oxid Med Cell Longev, 2017, 2017:4602715. doi:10.1155/2017/4602715. |
[26] | PROLA A, PIRES DA SILVA J, GUILBERT A, et al. SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation[J]. Cell Death Differ, 2017, 24(2):343-356. doi:10.1038/cdd.2016.138. |
[27] | REN F F, XIE Z Y, JIANG Y N, et al. Dapagliflozin attenuates pressure overload-induced myocardial remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress[J]. Acta Pharmacol Sin, 2022, 43(7):1721-1732. doi:10.1038/s41401-021-00805-2. |
[28] | JIA G, DEMARCO V G, SOWERS J R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy[J]. Nat Rev Endocrinol, 2016, 12(3):144-153. doi:10.1038/nrendo.2015.216. |
[29] | PANES J D, GODOY P A, SILVA-GRECCHI T, et al. Changes in PGC-1α/SIRT1 signaling impact on mitochondrial homeostasis in amyloid-beta peptide toxicity model[J]. Front Pharmacol, 2020, 11:709. doi:10.3389/fphar.2020.00709. |
[30] | DIAO J, ZHAO H, YOU P, et al. Rosmarinic acid ameliorated cardiac dysfunction and mitochondrial injury in diabetic cardiomyopathy mice via activation of the SIRT1/PGC-1α pathway[J]. Biochem Biophys Res Commun, 2021, 546:29-34. doi:10.1016/j.bbrc.2021.01.086. |
[31] | DING M, FENG N, TANG D, et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway[J]. J Pineal Res, 2018, 65(2):e12491. doi:10.1111/jpi.12491. |
[32] | GRUBIĆ ROTKVIĆ P, PLANINIĆ Z, LIBERATI PRŠO A M, et al. The mystery of diabetic cardiomyopathy:from early concepts and underlying mechanisms to novel therapeutic possibilities[J]. Int J Mol Sci, 2021, 22(11):5973. doi:10.3390/ijms22115973. |
[33] | SHEN J Z, YOUNG M J. Corticosteroids,heart failure,and hypertension:a role for immune cells?[J]. Endocrinology, 2012, 153(12):5692-5700. doi:10.1210/en.2012-1780. |
[34] | WAHBA N S, GHAREIB S A, ABDEL-GHANY R H, et al. Vitamin D3 potentiates the nephroprotective effects of metformin in a rat model of metabolic syndrome:role of AMPK/SIRT1 activation and DPP-4 inhibition[J]. Can J Physiol Pharmacol, 2021, 99(6):685-697. doi:10.1139/cjpp-2020-0435. |
[35] | WEN J, ZHANG L, WANG J, et al. Therapeutic effects of higenamine combined with [6]-gingerol on chronic heart failure induced by doxorubicin via ameliorating mitochondrial function[J]. J Cell Mol Med, 2020, 24(7):4036-4050. doi:10.1111/jcmm.15041. |
[36] | JIN Q, ZHU Q, WANG K, et al. Allisartan isoproxil attenuates oxidative stress and inflammation through the SIRT1/Nrf2/NF-κB signalling pathway in diabetic cardiomyopathy rats[J]. Mol Med Rep, 2021, 23(3):215. doi:10.3892/mmr.2021.11854. |
[37] | WEN Y, GENG L, ZHOU L, et al. Betulin alleviates on myocardial inflammation in diabetes mice via regulating Siti1/NLRP3/NF-κB pathways[J]. Int Immunopharmacol, 2020, 85:106653. doi:10.1016/j.intimp.2020.106653. |
[38] | REN B C, ZHANG Y F, LIU S S, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways[J]. J Cell Mol Med, 2020, 24(21):12355-12367. doi:10.1111/jcmm.15725. |
[39] | MA W, GUO W, SHANG F, et al. Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020:3732718. doi:10.1155/2020/3732718. |
[40] | ALBASHER G, ALKAHTANI S, AL-HARBI L N. Urolithin A prevents streptozotocin-induced diabetic cardiomyopathy in rats by activating SIRT1[J]. Saudi J Biol Sci, 2022, 29(2):1210-1220. doi:10.1016/j.sjbs.2021.09.045. |
[1] | WANG Xinshuang, AN Yajuan, GUAN Xiuju, LI Jiao, LIU Yue, WEI Liping, QI Xin. Study of magnesium isoglycyrrhizinate in ameliorating cisplatin induced myocardial injury in rats [J]. Tianjin Medical Journal, 2024, 52(8): 809-814. |
[2] | LIN Feng, CHEN Lingxiong, LIU Yu, ZHANG Xuming, YIN Zhida, LIN Tanhui, LIU Zunrong. Construction of long term restenosis prediction model for patients with severe subpatellar artery lesions in type 2 diabetes treated with paclitaxel coated balloon [J]. Tianjin Medical Journal, 2024, 52(8): 830-834. |
[3] | ZHONG Min, SHI Zhen, ZHOU Jinsong, LI Jinjie. Effects of GABA signaling pathway on endoplasmic reticulum stress and mitochondrial autophagy in septic rats with acute lung injury [J]. Tianjin Medical Journal, 2024, 52(7): 733-737. |
[4] | WANG Xian, LIU Xiaming, CHEN Manyu, ZHAO Jun, WANG Lidong. Construction and verification of prediction model of type 2 diabetic nephropathy based on machine learning [J]. Tianjin Medical Journal, 2024, 52(7): 775-780. |
[5] | WU Bo, ZHU Zhuonong, ZHENG Lijuan, CHEN Junru. Effects of matrine on inflammation, oxidative stress and wound healing in atopic dermatitis [J]. Tianjin Medical Journal, 2024, 52(6): 566-571. |
[6] | YUAN Man, FENG Zihan, XIE Min, WANG Bojun. Mechanism of emodin modulating pain behavior in mouse model of osteoarthritis [J]. Tianjin Medical Journal, 2024, 52(6): 572-577. |
[7] | WANG Junyi, LI Chen, WU Xinyue, DING Xinyu, WAN Chunxiao. Effect and mechanism of early exercise intervention on cerebral nerve myelin in rats with cerebral ischemia [J]. Tianjin Medical Journal, 2024, 52(6): 589-594. |
[8] | LI Min, GONG Jian, WU Weiwei, LIU Qiao. Research progress on the role of Nrf2/HO-1 pathway in psoriasis [J]. Tianjin Medical Journal, 2024, 52(5): 552-556. |
[9] | HUANG Yu, HE Ruiying, LIU Sen, CHEN Kaiyuan, LI Meiyun, CHENG Jianye, WU Yan. Study on the effect of Chlorella extract on promoting skin wound healing in diabetic mice [J]. Tianjin Medical Journal, 2024, 52(4): 337-345. |
[10] | CHEN Jing, WEI Yunjiao, LUO Chao, HUANG Lihua, CHEN Cheng, DUAN Shasha. The mechanism of Wumei pill on ulcerative colitis in mice based on Nrf2/ARE antioxidant stress pathway [J]. Tianjin Medical Journal, 2024, 52(3): 278-254. |
[11] | FU Xiujuan, LU Zuneng. Research progress of diabetes mellitus complicated with chronic inflammatory demyelinating polyneuropathy [J]. Tianjin Medical Journal, 2024, 52(2): 220-224. |
[12] | MIAO Chunbo, XU Yingchun, CHANG Yifang. Phlorizin allevistes oxidative stress and apoptosis of rat cardiac myocytes H9C2 induced by hypoxia/reoxygenation by down-regulating miR-125a-5p [J]. Tianjin Medical Journal, 2024, 52(12): 1233-1238. |
[13] | TU Jing, XIA Chenxi, LI Ting. Correlation analysis and risk factors of subclinical peripheral neuropathy and TIR in type 2 diabetes mellitus [J]. Tianjin Medical Journal, 2024, 52(11): 1188-1192. |
[14] | ZHANG Guixian, LIU Dawei, LI Wenchang, CAI Jun, ZONG Wenhui, LIU Hongbin, ZHAO Xiumei. Mechanism study of BOC2 alleviating SAP inflammatory damage by inhibiting N-formyl peptide/formyl peptide receptor pathway [J]. Tianjin Medical Journal, 2024, 52(10): 1031-1037. |
[15] | NIJAT Alim, MA Shifeng, XAMSIYA Alim, ZHANG Jing, ZHENG Rongxiu. Analysis of clinical characteristics and risk factors for diabetes mellitus complicated with urinary tract infection in children [J]. Tianjin Medical Journal, 2024, 52(10): 1051-1055. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||