Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (11): 1187-1192.doi: 10.11958/20230110
• Experimental Research • Previous Articles Next Articles
SHI Wenqian(), ZHAO Meiying, HUANG Jie, HE Gui, WANG Guiqing△(
)
Received:
2023-02-01
Revised:
2023-03-29
Published:
2023-11-15
Online:
2023-11-07
Contact:
△E-mail:SHI Wenqian, ZHAO Meiying, HUANG Jie, HE Gui, WANG Guiqing. Influence of miR-139-5p on cognitive dysfunction in rats with chronic cerebral hypoperfusion by targeting RIPK1/RIPK3/MLKL signal pathway[J]. Tianjin Medical Journal, 2023, 51(11): 1187-1192.
CLC Number:
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
miR-139- 5p | 上游:CAGCAGTGGCAGAGTGCG | 159 |
下游:CGATCCAGCCTACCTAGAGTGCA | ||
RIPK1 | 上游:TTCATGGTGCACAAACCCCT | 121 |
下游:TGACACAAGCGCAACAAAGG | ||
RIPK3 | 上游:CATCGATCTCTCTCGTGGGC | 185 |
下游:CGTACACGTAGTCCCACTCG | ||
MLKL | 上游:GGGAACACTCCACGGAAACA | 117 |
下游:GATCTTGCAGTCTCTCGGGG | ||
U6 | 上游:GGTCAGCCAGCTCAAGCGTC | 136 |
下游:TGGACACGCTCGCTCTGAATCG | ||
β-actin | 上游:CCCGCGAGTACAACCTTCTT | 98 |
下游:AGGGTCAGGATGCCTCTCTT |
Tab.1 Primer design sequence
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
miR-139- 5p | 上游:CAGCAGTGGCAGAGTGCG | 159 |
下游:CGATCCAGCCTACCTAGAGTGCA | ||
RIPK1 | 上游:TTCATGGTGCACAAACCCCT | 121 |
下游:TGACACAAGCGCAACAAAGG | ||
RIPK3 | 上游:CATCGATCTCTCTCGTGGGC | 185 |
下游:CGTACACGTAGTCCCACTCG | ||
MLKL | 上游:GGGAACACTCCACGGAAACA | 117 |
下游:GATCTTGCAGTCTCTCGGGG | ||
U6 | 上游:GGTCAGCCAGCTCAAGCGTC | 136 |
下游:TGGACACGCTCGCTCTGAATCG | ||
β-actin | 上游:CCCGCGAGTACAACCTTCTT | 98 |
下游:AGGGTCAGGATGCCTCTCTT |
组别 | 1 d | 2 d | 3 d | 4 d | 5 d |
---|---|---|---|---|---|
Sham组 | 30.28±3.75 | 26.62±3.37 | 24.39±2.72 | 20.38±2.30 | 16.60±1.87 |
Model组 | 53.65±5.02a | 50.40±4.16a | 48.45±4.21a | 45.32±3.85a | 41.06±3.77a |
miR-NC组 | 53.23±4.86 | 50.06±4.22 | 48.64±4.26 | 45.53±4.08 | 41.65±3.51 |
miR-139-5p mimic组 | 42.36±3.25bc | 37.14±3.54bc | 33.71±2.92bc | 29.42±2.39bc | 25.37±2.14bc |
miR-139-5p mimic+Nec-1组 | 33.55±2.38d | 28.10±1.95d | 25.55±1.67d | 22.83±1.23d | 18.62±1.15d |
F | 88.897** | 125.718** | 154.959** | 199.106** | 241.944** |
Tab.2 Comparison of escape latency in Morris water maze positioning navigation experiment between the five groups of rats
组别 | 1 d | 2 d | 3 d | 4 d | 5 d |
---|---|---|---|---|---|
Sham组 | 30.28±3.75 | 26.62±3.37 | 24.39±2.72 | 20.38±2.30 | 16.60±1.87 |
Model组 | 53.65±5.02a | 50.40±4.16a | 48.45±4.21a | 45.32±3.85a | 41.06±3.77a |
miR-NC组 | 53.23±4.86 | 50.06±4.22 | 48.64±4.26 | 45.53±4.08 | 41.65±3.51 |
miR-139-5p mimic组 | 42.36±3.25bc | 37.14±3.54bc | 33.71±2.92bc | 29.42±2.39bc | 25.37±2.14bc |
miR-139-5p mimic+Nec-1组 | 33.55±2.38d | 28.10±1.95d | 25.55±1.67d | 22.83±1.23d | 18.62±1.15d |
F | 88.897** | 125.718** | 154.959** | 199.106** | 241.944** |
组别 | GSH-Px/(kU/g) | SOD/(kU/g) | MDA/(mmol/g) | TNF-α/(ng/L) | IL-6/(ng/L) |
---|---|---|---|---|---|
Sham组 | 28.04±3.36 | 50.47±2.63 | 0.78±0.08 | 95.15±9.24 | 12.53±1.14 |
Model组 | 8.67±0.95a | 12.24±0.88a | 3.24±0.25a | 316.42±26.32a | 58.63±6.05a |
miR-NC组 | 8.96±0.78 | 11.82±0.95 | 3.12±0.21 | 309.48±27.26 | 57.03±5.76 |
miR-139-5p mimic组 | 16.83±1.22bc | 26.41±2.38bc | 1.18±0.09bc | 248.37±25.40bc | 30.28±2.51bc |
miR-139-5p mimic+Nec-1组 | 27.74±2.30d | 43.10±3.59d | 0.80±0.03d | 176.45±16.34d | 16.49±1.73d |
F | 140.124** | 343.236** | 383.479** | 108.404** | 178.559** |
Tab.3 Comparison of GSH-Px, SOD, MDA, TNF-α and IL-6 levels in hippocampus between the five groups of rats
组别 | GSH-Px/(kU/g) | SOD/(kU/g) | MDA/(mmol/g) | TNF-α/(ng/L) | IL-6/(ng/L) |
---|---|---|---|---|---|
Sham组 | 28.04±3.36 | 50.47±2.63 | 0.78±0.08 | 95.15±9.24 | 12.53±1.14 |
Model组 | 8.67±0.95a | 12.24±0.88a | 3.24±0.25a | 316.42±26.32a | 58.63±6.05a |
miR-NC组 | 8.96±0.78 | 11.82±0.95 | 3.12±0.21 | 309.48±27.26 | 57.03±5.76 |
miR-139-5p mimic组 | 16.83±1.22bc | 26.41±2.38bc | 1.18±0.09bc | 248.37±25.40bc | 30.28±2.51bc |
miR-139-5p mimic+Nec-1组 | 27.74±2.30d | 43.10±3.59d | 0.80±0.03d | 176.45±16.34d | 16.49±1.73d |
F | 140.124** | 343.236** | 383.479** | 108.404** | 178.559** |
组别 | miR-139 -5p | RIPK1 | RIPK3 | MLKL |
---|---|---|---|---|
Sham组 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
Model组 | 0.31±0.03a | 2.24±0.20a | 1.97±0.18a | 2.16±0.20a |
miR-NC组 | 0.30±0.03 | 2.20±0.21 | 1.95±0.19 | 2.12±0.21 |
miR-139-5p mimic组 | 0.66±0.08bc | 1.64±0.13bc | 1.58±0.09bc | 1.65±0.10bc |
miR-139-5p mimic+Nec-1组 | 0.89±0.09 | 1.15±0.06d | 1.23±0.03d | 1.28±0.04d |
F | 191.724** | 94.870** | 71.818** | 81.511** |
Tab.4 Comparison of miR-139-5p, RIPK1, RIPK3 and MLKL mRNA levels between the five groups of rats
组别 | miR-139 -5p | RIPK1 | RIPK3 | MLKL |
---|---|---|---|---|
Sham组 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
Model组 | 0.31±0.03a | 2.24±0.20a | 1.97±0.18a | 2.16±0.20a |
miR-NC组 | 0.30±0.03 | 2.20±0.21 | 1.95±0.19 | 2.12±0.21 |
miR-139-5p mimic组 | 0.66±0.08bc | 1.64±0.13bc | 1.58±0.09bc | 1.65±0.10bc |
miR-139-5p mimic+Nec-1组 | 0.89±0.09 | 1.15±0.06d | 1.23±0.03d | 1.28±0.04d |
F | 191.724** | 94.870** | 71.818** | 81.511** |
组别 | RIPK1 | RIPK3 | MLKL | SYP | PSD95 | α-SYN |
---|---|---|---|---|---|---|
Sham组 | 0.21±0.02 | 0.24±0.02 | 0.17±0.02 | 0.87±0.08 | 0.82±0.08 | 0.15±0.02 |
Model组 | 0.86±0.08a | 0.90±0.09a | 0.81±0.08a | 0.23±0.02a | 0.19±0.02a | 0.76±0.07a |
miR-NC组 | 0.83±0.08 | 0.92±0.08 | 0.79±0.08 | 0.21±0.02 | 0.18±0.02 | 0.77±0.07 |
miR-139-5p mimic组 | 0.55±0.03bc | 0.41±0.04bc | 0.48±0.03bc | 0.56±0.05bc | 0.42±0.06bc | 0.38±0.03bc |
miR-139-5p mimic+Nec-1组 | 0.38±0.02d | 0.29±0.02d | 0.23±0.01d | 0.75±0.08d | 0.80±0.08d | 0.20±0.02d |
F | 164.338** | 196.456** | 191.366** | 166.360** | 188.145** | 232.096** |
Tab.5 Comparison of RIPK1/RIPK3/MLKL signaling path-related proteins and SYP, PSD95 and α-SYN protein expression levels between the five groups of rats
组别 | RIPK1 | RIPK3 | MLKL | SYP | PSD95 | α-SYN |
---|---|---|---|---|---|---|
Sham组 | 0.21±0.02 | 0.24±0.02 | 0.17±0.02 | 0.87±0.08 | 0.82±0.08 | 0.15±0.02 |
Model组 | 0.86±0.08a | 0.90±0.09a | 0.81±0.08a | 0.23±0.02a | 0.19±0.02a | 0.76±0.07a |
miR-NC组 | 0.83±0.08 | 0.92±0.08 | 0.79±0.08 | 0.21±0.02 | 0.18±0.02 | 0.77±0.07 |
miR-139-5p mimic组 | 0.55±0.03bc | 0.41±0.04bc | 0.48±0.03bc | 0.56±0.05bc | 0.42±0.06bc | 0.38±0.03bc |
miR-139-5p mimic+Nec-1组 | 0.38±0.02d | 0.29±0.02d | 0.23±0.01d | 0.75±0.08d | 0.80±0.08d | 0.20±0.02d |
F | 164.338** | 196.456** | 191.366** | 166.360** | 188.145** | 232.096** |
[1] | DUNCOMBE J, KITAMURA A, HASE Y, et al. Chronic cerebral hypoperfusion:A key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia[J]. Clin Sci(Lond), 2017, 131(19):2451-2468. doi:10.1042/CS20160727. |
[2] | YAN N, XU Z, QU C, et al. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation,oxidative stress,and ferroptosis via NRF2/ARE/NF-κB signal pathway[J]. Int Immunopharmacol, 2021, 98:107844. doi:10.1016/j.intimp.2021.107844. |
[3] | SU S H, WU Y F, LIN Q, et al. URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion[J]. J Neuroinflammation, 2019, 16(1):260. doi:10.1186/s12974-019-1668-0. |
[4] | BI X, FENG Y, WU Z, et al. Electroacupuncture attenuates cognitive impairment in rat model of chronic cerebral hypoperfusion via miR-137/NOX4 axis[J]. Evid Based Complement Alternat Med, 2021, 2021:8842022. doi:10.1155/2021/8842022. |
[5] | MAO M, XU Y, ZHANG X Y, et al. MicroRNA-195 prevents hippocampal microglial/macrophage polarization towards the M1 phenotype induced by chronic brain hypoperfusion through regulating CX3CL1/CX3CR1 signaling[J]. J Neuroinflammation, 2020, 17(1):244. doi:10.1186/s12974-020-01919-w. |
[6] | YAN M L, ZHANG S, ZHAO H M, et al. MicroRNA-153 impairs presynaptic plasticity by blocking vesicle release following chronic brain hypoperfusion[J]. Cell Commun Signal, 2020, 18(1):57. doi:10.1186/s12964-020-00551-8. |
[7] | YAO Y, HU S, ZHANG C, et al. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis[J]. Int Immunopharmacol, 2022, 105:108582. doi:10.1016/j.intimp.2022.108582. |
[8] | ZHANG Y Y, LIU W N, LI Y Q, et al. Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2019, 392(9):1085-1095. doi:10.1007/s00210-019-01656-9. |
[9] | DENG X X, LI S S, SUN F Y. Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling[J]. Aging Dis, 2019, 10(4):807-817. doi:10.14336/AD.2018.0728. |
[10] | 欧阳梦琪, 舒佳慧, 张棋, 等. 辣椒素对慢性脑低灌注大鼠认知行为受损及海马线粒体-内质网结构偶联表达的影响[J]. 中国病理生理杂志, 2019, 35(8):1393-1402. |
OUYANG M Q, SHU J H, ZHANG Q, et al. Effects of capsaicin on cognitive impairment and mitochondria-associated endoplasmic reticulum membranes in rats with chronic cerebral hypoper-fusion[J]. Chinese Journal of Pathophysiolog, 2019, 35(8):1393-1402. doi:10.3969/j.issn.1000-4718.2019.08.008. | |
[11] | 陈胜, 王春明, 严雪飞, 等. 特异性坏死性凋亡抑制剂-1(Nec-1)减轻脊髓损伤模型大鼠胶质瘢痕的形成[J]. 基础医学与临床, 2022, 42(1):94-99. |
CHEN S, WANG C M, YAN X F, et al. Specific necroptosis inhibitor-1(Nec-1)attenuates glial scar formation in rat models with spinal cord injury[J]. Basic Clin Med, 2022, 42(1):94-99. doi:10.3969/j.issn.1001-6325.2022.01.016. | |
[12] | WAN Q, MA X, ZHANG Z J, et al. Ginsenoside reduces cognitive impairment during chronic cerebral hypoperfusion through brain-derived neurotrophic factor regulated by epigenetic modulation[J]. Mol Neurobiol, 2017, 54(4):2889-2900. doi:10.1007/s12035-016-9868-4. |
[13] | HAM P B 3rd, RAJU R. Mitochondrial function in hypoxic ischemic injury and influence of aging[J]. Prog Neurobiol, 2017, 157:92-116. doi:10.1016/j.pneurobio.2016.06.006. |
[14] | 何婧, 黄燕, 杜果, 等. 慢性脑低灌注致模型大鼠学习记忆受损及海马α-突触核蛋白变化[J]. 中国组织工程研究, 2018, 22(20):3230-3236. |
HE J, HUANG Y, DU G, et al. Cognitive impairment and hippocampal alpha-synuclein change in a rat model of chronic cerebral hypoperfusion[J]. Chinese Journal of Tissue Engineering Research, 2018, 22(20):3230-3236. doi:10.3969/j.issn.2095-4344.0311. | |
[15] | 董雯, 刘奔, 伦永志. 白藜芦醇对长期高热量饮食小鼠的认知功能保护及突触相关机制研究[J]. 中国现代应用药学, 2020, 37(14):1692-1697. |
DONG W, LIU B, LUN Y Z. Study on the cognitive function protection and synaptic mechanism of resveratrol on mice fed with long-term high-calorie diet[J]. Chin J Mod Appl Pharm, 2020, 37(14):1692-1697. doi:10.13748/j.cnki.issn1007-7693.2020.14.005. | |
[16] | CASALETTO K, RAMOS-MIGUEL A, VANDEBUNTE A, et al. Late-life physical activity relates to brain tissue synaptic integrity markers in older adults[J]. Alzheimers Dement, 2022, 18(11):2023-2035. doi:10.1002/alz.12530. |
[17] | COLEY A A, GAO W J. PSD95:A synaptic protein implicated in schizophrenia or autism?[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 82:187-194. doi:10.1016/j.pnpbp.2017.11.016. |
[18] | 王玲, 张盼盼, 付爱双, 等. 间歇低氧对大鼠海马神经细胞突触相关蛋白表达及认知功能的影响[J]. 中华老年心脑血管病杂志, 2020, 22(5):534-537. |
WANG L, ZHANG P P, FU A S, et al. Effects of intermittent hypoxia on synapse-related protein expression and cognitive function of hippocampal neurons in rats[J]. Chin J Geriatr Heart Brain Vessel Dis, 2020, 22(5):534-537. doi:10.3969/j.issn.1009-0126.2020.05.021. | |
[19] | 陈景, 杨磊, 左亚杰, 等. 黄芩苷改善慢性脑低灌注大鼠认知障碍的作用及机制研究[J]. 中南药学, 2021, 19(7):1333-1338. |
CHEN J, YANG L, ZUO Y J, et al. Effect of baicalin on cognitive impairment in rats with chronic cerebral hypoperfusion and its mechanism[J]. Central South Pharmacy, 2021, 19(7):1333-1338. doi:10.7539/j.issn.1672-2981.2021.07.013. | |
[20] | MEHRA S, SAHAY S, MAJI S K. α-Synuclein misfolding and aggregation:Implications in Parkinson's disease pathogenesis[J]. Biochim Biophys Acta Proteins Proteom, 2019, 1867(10):890-908. doi:10.1016/j.bbapap.2019.03.001. |
[21] | KIM S, KWON S H, KAM T I, et al. Transneuronal propagation of pathologic α-Synuclein from the gut to the brain models Parkinson's disease[J]. Neuron, 2019, 103(4):627-641.e7. doi:10.1016/j.neuron.2019.05.035. |
[22] | PALMAS M F, ETZI M, PISANU A, et al. The intranigral infusion of human-alpha synuclein oligomers induces a cognitive impairment in rats associated with changes in neuronal firing and neuroinflammation in the anterior cingulate cortex[J]. Cells, 2022, 11(17):2628. doi:10.3390/cells11172628. |
[23] | LIU X, LV X, LIU Z, et al. MircoRNA-29a in astrocyte-derived extracellular vesicles suppresses brain ischemia reperfusion injury via TP53INP1 and the NF-κB/NLRP3 axis[J]. Cell Mol Neurobiol, 2022, 42(5):1487-1500. doi:10.1007/s10571-021-01040-3. |
[24] | WANG Q S, LUO X Y, FU H, et al. MiR-139 protects against oxygen-glucose deprivation/reoxygenation(OGD/R)-induced nerve injury through targeting c-Jun to inhibit NLRP3 inflammasome activation[J]. J Stroke Cerebrovasc Dis, 2020, 29(9):105037. doi:10.1016/j.jstrokecerebrovasdis.2020.105037. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||