[1] |
GARRETA E, KAMM R D, CHUVA DE SOUSA LOPES S M, et al. Rethinking organoid technology through bioengineering[J]. Nat Mater, 2021, 20(2):145-155. doi:10.1038/s41563-020-00804-4.
|
[2] |
HOU Q, HUANG J, AYANSOLA H, et al. Intestinal stem cells and immune cell relationships: potential therapeutic targets for inflammatory bowel diseases[J]. Front Immunol, 2020, 11:623691. doi:10.3389/fimmu.2020.623691.
|
[3] |
HAN Y, YANG L, LACKO L A, et al. Human organoid models to study SARS-CoV-2 infection[J]. Nat Methods, 2022, 19(4):418-428. doi:10.1038/s41592-022-01453.
|
[4] |
ZHANG X, MA Z, SONG E, et al. Islet organoid as a promising model for diabetes[J]. Protein Cell, 2022, 13(4):239-257. doi:10.1007/s13238-021-00831-0.
|
[5] |
MARTINEZ-GURYN K, HUBERT N, FRAZIER K, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids[J]. Cell Host Microbe, 2018, 23(4):458-469.e5. doi:10.1016/j.chom.2018.03.011.
|
[6] |
NEAL J T, LI X, ZHU J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7):1972-1988. doi:10.1016/j.cell.2018.11.021.
|
[7] |
LANCASTER M A, KNOBLICH J A. Organogenesis in a dish:modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125. doi:10.1126/science.1247125.
|
[8] |
ANDREWS M G, KRIEGSTEIN A R. Challenges of organoid research[J]. Annu Rev Neurosci, 2022, 45:23-39. doi:10.1146/annurev-neuro-111020-090812.
|
[9] |
PRIOR N, INACIO P, HUCH M. Liver organoids:from basic research to therapeutic applications[J]. Gut, 2019, 68(12):2228-2237. doi:10.1136/gutjnl-2019-319256.
|
[10] |
HUANG S, ZHANG S, CHEN L, et al. Lipopolysaccharide induced intestinal epithelial injury: a novel organoids-based model for sepsis in vitro[J]. Chin Med J (Engl), 2022, 135(18):2232-2239. doi:10.1097/CM9.0000000000002348.
|
[11] |
余应嘉, 叶淑芳, 邓燕芳, 等. 大黄素甲醚对LPS诱导肠上皮细胞损伤自噬与缝隙连接蛋白的作用影响[J/OL]. 中国医院药学杂志, 2023. http://kns.cnki.net/kcms/detail/42.1204.R.20230728.1723.006.html.
|
|
YU Y J, YE S F, DENG Y F, et al. Effect of physcion on autophagy and gap junction protein in LPS-induced intestinal epithelial cell injury model[J/OL]. Chinese Journal of Hospital Pharmacy, 2023. http://kns.cnki.net/kcms/detail/42.1204.R.20230728.1723.006.html.
|
[12] |
郭子涵. 吲哚-3-甲醇对肉兔生长发育和LPS诱导的小肠炎症的影响及机制[D]. 重庆: 西南大学, 2022.
|
|
GUO Z H. Effects and mechanism of indole-3-carbinol on growth and development and LPS induced intestinal inflammation in rabbits[D]. Chongqing: Southwest University, 2022. doi:10.27684/d.cnki.gxndx.2022.000176.
|
[13] |
OKAMURA T, HASHIMOTO Y, MAJIMA S, et al. Trans fatty acid intake induces intestinal inflammation and impaired glucose tolerance[J]. Front Immunol, 2021, 12:669672. doi:10.3389/fimmu.2021.669672.
|
[14] |
SAHOO D K, BORCHERDING D C, CHANDRA L, et al. Differential transcriptomic profiles following stimulation with lipopolysaccharide in intestinal organoids from dogs with inflammatory bowel disease and intestinal mast cell tumor[J]. Cancers, 2022, 14(14):3525. doi:10.3390/cancers14143525.
|
[15] |
PARK B S, LEE J O. Recognition of lipopolysaccharide pattern by TLR4 complexes[J]. Exp Mol Med, 2013, 45(12):e66. doi:10.1038/emm.2013.97.
|
[16] |
ANDREWS C, MCLEAN M H, DURUM S K. Cytokine tuning of intestinal epithelial function[J]. Front Immunol, 2018, 9:1270. doi:10.3389/fimmu.2018.01270.
|
[17] |
王稣嫱. 绿原酸对LPS诱导小鼠肠上皮损伤的保护机制研究[D]. 杭州: 浙江工商大学, 2020.
|
|
WANG S Q. Protective mechanism of chlorogenic acid on LPS-induced intestinal epithelial injury of mouse[D]. Hangzhou: Zhejiang Gongshang University, 2020. doi:10.27462/d.cnki.ghzhc.2020.000452.
|
[18] |
GOOD D W, GEORGE T, WATTS B A 3rd. Toll-like receptor 2 is required for LPS-induced Toll-like receptor 4 signaling and inhibition of ion transport in renal thick ascending limb[J]. J Biol Chem, 2012, 287(24):20208-20220. doi:10.1074/jbc.M111.336255.
|
[19] |
FUKUDA M, MIZUTANI T, MOCHIZUKI W, et al. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon[J]. Genes Dev, 2014, 28(16):1752-1757. doi:10.1101/gad.245233.114.
|
[20] |
WATSON C L, MAHE M M, MÚNERA J, et al. An in vivo model of human small intestine using pluripotent stem cells[J]. Nat Med, 2014, 20(11):1310-1314. doi:10.1038/nm.3737.
|
[21] |
GUO S, NIGHOT M, AL-SADI R, et al. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88[J]. J Immunol, 2015, 195(10):4999-5010. doi:10.4049/jimmunol.140259.
|
[22] |
GVIRTZ R, OGEN-SHTERN N, COHEN G. Kinetic cytokine secretion profile of LPS-induced inflammation in the human skin organ culture[J]. Pharmaceutics, 2020, 12(4):299. doi:10.3390/pharmaceutics12040299.
|