Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (1): 73-79.doi: 10.11958/20230179
• Experimental Research • Previous Articles Next Articles
Received:
2023-08-04
Published:
2024-01-15
Online:
2024-01-18
YANG Yang, HE Qiaoyu. Impact of salvianolic acid B on cognitive function and GSK-3β/β-Catenin signaling pathway in rats with post-traumatic stress disorder[J]. Tianjin Medical Journal, 2024, 52(1): 73-79.
CLC Number:
组别 | 爬行格数/个 | 站立次数/次 | 运动总距离/cm |
---|---|---|---|
正常组 | 76.33±4.68 | 14.25±1.46 | 2 436.18±90.29 |
PTSD组 | 48.21±3.95a | 5.17±0.85a | 1 059.67±52.43a |
Sal B低剂量组 | 61.83±4.40b | 9.08±1.02b | 1 836.29±71.85b |
Sal B高剂量组 | 72.50±4.06bc | 12.47±1.25bc | 2 345.35±83.86bc |
GSK-3β抑制剂组 | 69.58±4.12bc | 11.67±1.18bc | 2 308.42±89.27bc |
F | 82.233** | 108.915** | 635.255** |
Tab.1 Comparison of the number of crawling cells, standing times and total distance of exercise in open field experiment between the five groups of rats (n=12,$\bar{x}±s$)
组别 | 爬行格数/个 | 站立次数/次 | 运动总距离/cm |
---|---|---|---|
正常组 | 76.33±4.68 | 14.25±1.46 | 2 436.18±90.29 |
PTSD组 | 48.21±3.95a | 5.17±0.85a | 1 059.67±52.43a |
Sal B低剂量组 | 61.83±4.40b | 9.08±1.02b | 1 836.29±71.85b |
Sal B高剂量组 | 72.50±4.06bc | 12.47±1.25bc | 2 345.35±83.86bc |
GSK-3β抑制剂组 | 69.58±4.12bc | 11.67±1.18bc | 2 308.42±89.27bc |
F | 82.233** | 108.915** | 635.255** |
组别 | 1 d | 2 d |
---|---|---|
正常组 | 31.59±4.42 | 23.47±4.03 |
PTSD组 | 75.64±6.83a | 70.95±6.92a |
Sal B低剂量组 | 56.78±5.97b | 49.26±5.84b |
Sal B高剂量组 | 43.15±5.62bc | 35.24±5.16bc |
GSK-3β抑制剂组 | 46.06±4.98bc | 37.58±5.34bc |
F | 104.545** | 126.256** |
组别 | 3 d | 4 d |
正常组 | 15.26±3.15 | 8.95±2.64 |
PTSD组 | 67.08±6.54a | 61.24±6.71a |
Sal B低剂量组 | 41.65±5.23b | 33.17±4.38b |
Sal B高剂量组 | 30.57±4.31bc | 24.97±3.97bc |
GSK-3β抑制剂组 | 33.19±4.58bc | 27.12±3.65bc |
F | 182.284** | 217.942** |
Tab.2 Comparison of escape latency in Morris water maze experiment between the five groups of rats (n=12,s,$\bar{x}±s$)
组别 | 1 d | 2 d |
---|---|---|
正常组 | 31.59±4.42 | 23.47±4.03 |
PTSD组 | 75.64±6.83a | 70.95±6.92a |
Sal B低剂量组 | 56.78±5.97b | 49.26±5.84b |
Sal B高剂量组 | 43.15±5.62bc | 35.24±5.16bc |
GSK-3β抑制剂组 | 46.06±4.98bc | 37.58±5.34bc |
F | 104.545** | 126.256** |
组别 | 3 d | 4 d |
正常组 | 15.26±3.15 | 8.95±2.64 |
PTSD组 | 67.08±6.54a | 61.24±6.71a |
Sal B低剂量组 | 41.65±5.23b | 33.17±4.38b |
Sal B高剂量组 | 30.57±4.31bc | 24.97±3.97bc |
GSK-3β抑制剂组 | 33.19±4.58bc | 27.12±3.65bc |
F | 182.284** | 217.942** |
组别 | 跨越原平台 次数/次 | 首次跨越原 平台时间/s |
---|---|---|
正常组 | 9.25±1.38 | 10.68±1.29 |
PTSD组 | 3.42±0.85a | 39.45±3.18a |
Sal B低剂量组 | 4.83±0.96b | 27.84±2.86b |
Sal B高剂量组 | 7.67±1.25bc | 19.07±1.95bc |
GSK-3β抑制剂组 | 7.00±1.04bc | 21.31±2.42bc |
F | 51.921** | 233.936** |
Tab.3 Comparison of the times of crossing the original platform and the time of crossing the original platform for the first time in Morris water maze experiment between the five groups of rats (n=12,$\bar{x}±s$)
组别 | 跨越原平台 次数/次 | 首次跨越原 平台时间/s |
---|---|---|
正常组 | 9.25±1.38 | 10.68±1.29 |
PTSD组 | 3.42±0.85a | 39.45±3.18a |
Sal B低剂量组 | 4.83±0.96b | 27.84±2.86b |
Sal B高剂量组 | 7.67±1.25bc | 19.07±1.95bc |
GSK-3β抑制剂组 | 7.00±1.04bc | 21.31±2.42bc |
F | 51.921** | 233.936** |
组别 | 神经元凋亡率/ % | Bax | cleaved caspase-3 |
---|---|---|---|
正常组 | 5.89±0.96 | 0.18±0.04 | 0.27±0.05 |
PTSD组 | 57.26±7.85a | 0.79±0.06a | 0.92±0.08a |
Sal B低剂量组 | 32.17±5.43b | 0.51±0.06b | 0.63±0.06b |
Sal B高剂量组 | 20.42±2.56bc | 0.29±0.05bc | 0.41±0.05bc |
GSK-3β抑制剂组 | 22.05±3.18bc | 0.32±0.06bc | 0.45±0.07bc |
F | 100.345** | 115.510** | 94.342** |
Tab.4 Comparison of apoptosis rate of hippocampal neurons and expression levels of Bax and cleaved caspase-3 in hippocampal tissue between the five groups of rats (n=6,$\bar{x}±s$)
组别 | 神经元凋亡率/ % | Bax | cleaved caspase-3 |
---|---|---|---|
正常组 | 5.89±0.96 | 0.18±0.04 | 0.27±0.05 |
PTSD组 | 57.26±7.85a | 0.79±0.06a | 0.92±0.08a |
Sal B低剂量组 | 32.17±5.43b | 0.51±0.06b | 0.63±0.06b |
Sal B高剂量组 | 20.42±2.56bc | 0.29±0.05bc | 0.41±0.05bc |
GSK-3β抑制剂组 | 22.05±3.18bc | 0.32±0.06bc | 0.45±0.07bc |
F | 100.345** | 115.510** | 94.342** |
组别 | Cyclin D1 | c-Myc |
---|---|---|
正常组 | 0.69±0.06 | 0.57±0.05 |
PTSD组 | 0.23±0.04a | 0.18±0.03a |
Sal B低剂量组 | 0.40±0.05b | 0.35±0.03b |
Sal B高剂量组 | 0.54±0.05bc | 0.46±0.04bc |
GSK-3β抑制剂组 | 0.51±0.06bc | 0.42±0.05bc |
F | 63.761** | 74.750** |
Tab.5 Comparison of protein expression levels of c-Myc and Cyclin D1 in hippocampal tissue between the five groups of rats (n=6,$\bar{x}±s$)
组别 | Cyclin D1 | c-Myc |
---|---|---|
正常组 | 0.69±0.06 | 0.57±0.05 |
PTSD组 | 0.23±0.04a | 0.18±0.03a |
Sal B低剂量组 | 0.40±0.05b | 0.35±0.03b |
Sal B高剂量组 | 0.54±0.05bc | 0.46±0.04bc |
GSK-3β抑制剂组 | 0.51±0.06bc | 0.42±0.05bc |
F | 63.761** | 74.750** |
组别 | t-GSK- 3β | p-GSK- 3β | t-β- Catenin | p-β- Catenin |
---|---|---|---|---|
正常组 | 0.15±0.03 | 0.61±0.05 | 0.79±0.05 | 0.18±0.03 |
PTSD组 | 0.78±0.06a | 0.18±0.03a | 0.23±0.04a | 0.67±0.06a |
Sal B低剂量组 | 0.54±0.05b | 0.35±0.04b | 0.51±0.05b | 0.49±0.05b |
Sal B高剂量组 | 0.37±0.04bc | 0.45±0.04bc | 0.65±0.05bc | 0.35±0.04bc |
GSK-3β抑制 剂组 | 0.34±0.04bc | 0.47±0.05bc | 0.66±0.06bc | 0.33±0.05bc |
F | 165.088** | 83.802** | 107.528** | 92.378** |
Tab.6 Comparison of protein expression levels of t-GSK-3β, p-GSK-3β, t-β-Catenin and p-β-Catenin in hippocampal tissue between the five groups of rats (n=6,$\bar{x}±s$)
组别 | t-GSK- 3β | p-GSK- 3β | t-β- Catenin | p-β- Catenin |
---|---|---|---|---|
正常组 | 0.15±0.03 | 0.61±0.05 | 0.79±0.05 | 0.18±0.03 |
PTSD组 | 0.78±0.06a | 0.18±0.03a | 0.23±0.04a | 0.67±0.06a |
Sal B低剂量组 | 0.54±0.05b | 0.35±0.04b | 0.51±0.05b | 0.49±0.05b |
Sal B高剂量组 | 0.37±0.04bc | 0.45±0.04bc | 0.65±0.05bc | 0.35±0.04bc |
GSK-3β抑制 剂组 | 0.34±0.04bc | 0.47±0.05bc | 0.66±0.06bc | 0.33±0.05bc |
F | 165.088** | 83.802** | 107.528** | 92.378** |
[1] | FENSTER R J, LEBOIS L, RESSLER K J, et al. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man[J]. Nat Rev Neurosci, 2018, 19(9):535-551. doi:10.1038/s41583-018-0039-7. |
[2] | MAERCKER A, CLOITRE M, BACHEM R, et al. Complex post-traumatic stress disorder[J]. Lancet, 2022, 400(10345):60-72. doi:10.1016/S0140-6736(22)00821-2. |
[3] | MERIANS A N, SPILLER T, HARPAZ-ROTEM I, et al. Post-traumatic stress disorder[J]. Med Clin North Am, 2023, 107(1):85-99. doi:10.1016/j.mcna.2022.04.003. |
[4] | YANG Y, SONG J, LIU N, et al. Salvianolic acid A relieves cognitive disorder after chronic cerebral ischemia: Involvement of Drd2/Cryab/NF-κB pathway[J]. Pharmacol Res, 2022, 175:105989. doi:10.1016/j.phrs.2021.105989. |
[5] | 李建, 李强, 李延峰, 等. 丹酚酸B治疗阿尔茨海默病的作用机制研究进展[J]. 中国药理学通报, 2022, 38(4):487-491. |
LI J, LI Q, LI Y F, et al. Recent progress of salvianolic acid B for treatment of Alzheimer’s disease[J]. Chinese Pharmacological Bulletin, 2022, 38(4):487-491. doi:10.12360/CPB202108020. | |
[6] | HUI J, ZHANG J, PU M, et al. Modulation of GSK-3β/β-catenin signaling contributes to learning and memory impairment in a rat model of depression[J]. Int J Neuropsychopharmacol, 2018, 21(9):858-870. doi:10.1093/ijnp/pyy040. |
[7] | ZHANG S, KONG D W, MA G D, et al. Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway[J]. Acta Pharmacol Sin, 2022, 43(9):2212-2225. doi:10.1038/s41401-021-00844-9. |
[8] | SHU T, LIU C, PANG M, et al. Salvianolic acid B promotes neural differentiation of induced pluripotent stem cells via PI3K/AKT/GSK3β/β-catenin pathway[J]. Neurosci Lett, 2018, 671:154-160. doi:10.1016/j.neulet.2018.02.007. |
[9] | 丛海涛, 丁进峰, 何海娟, 等. 右美托咪定对创伤后应激障碍大鼠核因子κB抑制蛋白激酶/核因子κB抑制蛋白α/核因子κB通路及认知功能障碍的影响[J]. 解剖学报, 2022, 53(3):295-301. |
CONG H T, DING J F, HE H J, et al. Effects of dexmedetomidine on nuclear factor-κB inhibitor protein kinase/nuclear factor-κB inhibitor proteinα/nuclear factor-κB pathway and cognitive dysfunction in rats with post-traumatic stress disorder[J]. Acta Anatomica Sinica, 2022, 53(3):295-301. doi:10.16098/j.issn.0529-1356.2022.03.004. | |
[10] | ALQURAAN L, ALZOUBI K H, HAMMAD H, et al. Omega-3 fatty acids prevent post-traumatic stress disorder-induced memory impairment[J]. Biomolecules, 2019, 9(3):100. doi:10.3390/biom9030100. |
[11] | 孙一萍, 李晓艳, 邵瑞洁, 等. 针刺对创伤后应激障碍大鼠海马内质网应激相关分子的影响[J]. 针刺研究, 2022, 47(3):224-230. |
SUN Y P, LI X Y, SHAO R J, et al. Effect of acupuncture on endoplasmic reticulum stress-related factors in hippocampus of post-traumatic stress disorder rats[J]. Acupuncture Research, 2022, 47(3):224-230. doi:10.13702/j.1000-0607.20210718. | |
[12] | ZHANG X, WU Q, LU Y, et al. Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways[J]. Free Radic Biol Med, 2018, 124:504-516. doi:10.1016/j.freeradbiomed.2018.06.035. |
[13] | KONDASHEVSKAYA M V, ARTEM'YEVA K A, ALEKSANKINA V V, et al. Phenotypically determined liver dysfunction in a Wistar rat model of post-traumatic stress disorder[J]. J Evol Biochem Physiol, 2022, 58(4):1015-1024. doi:10.1134/S002209302204007X. |
[14] | SUR B, LEE B. Ginsenoside Rg3 modulates spatial memory and fear memory extinction by the HPA axis and BDNF-TrkB pathway in a rat post-traumatic stress disorder[J]. J Nat Med, 2022, 76(4):821-831. doi:10.1007/s11418-022-01636-z. |
[15] | JIA Y, HAN Y, WANG X, et al. Role of apoptosis in the post-traumatic stress disorder model-single prolonged stressed rats[J]. Psychoneuroendocrinology, 2018, 95:97-105. doi:10.1016/j.psyneuen.2018.05.015. |
[16] | SEO J H, PARK H S, PARK S S, et al. Physical exercise ameliorates psychiatric disorders and cognitive dysfunctions by hippocampal mitochondrial function and neuroplasticity in post-traumatic stress disorder[J]. Exp Neurol, 2019, 322:113043. doi:10.1016/j.expneurol.2019.113043. |
[17] | XIAO Z, LIU W, MU Y P, et al. Pharmacological effects of salvianolic acid B against oxidative damage[J]. Front Pharmacol, 2020, 11:572373. doi:10.3389/fphar.2020.572373. |
[18] | GUO S S, WANG Z G. Salvianolic acid B from Salvia miltiorrhiza bunge:a potential antitumor agent[J]. Front Pharmacol, 2022, 13:1042745. doi:10.3389/fphar.2022.1042745. |
[19] | ZHAO R, LIU X, ZHANG L, et al. Current progress of research on neurodegenerative diseases of salvianolic acid B[J]. Oxid Med Cell Longev, 2019, 2019:3281260. doi:10.1155/2019/3281260. |
[20] | YU X, GUAN Q, WANG Y, et al. Anticonvulsant and anti-apoptosis effects of salvianolic acid B on pentylenetetrazole-kindled rats via AKT/CREB/BDNF signaling[J]. Epilepsy Res, 2019, 154:90-96. doi:10.1016/j.eplepsyres.2019.05.007. |
[21] | ZHAO Y, ZHANG Y, ZHANG J, et al. Salvianolic acid B protects against MPP+-induced neuronal injury via repressing oxidative stress and restoring mitochondrial function[J]. Neuroreport, 2021, 32(9):815-823. doi:10.1097/WNR.0000000000001660. |
[22] | YANG Y, WANG L, ZHANG C, et al. Ginsenoside Rg1 improves Alzheimer's disease by regulating oxidative stress, apoptosis, and neuroinflammation through Wnt/GSK-3β/β-catenin signaling pathway[J]. Chem Biol Drug Des, 2022, 99(6):884-896. doi:10.1111/cbdd.14041. |
[23] | HUANG Y L, ZHANG J N, HOU T Z, et al. Inhibition of Wnt/β-catenin signaling attenuates axonal degeneration in models of Parkinson's disease[J]. Neurochem Int, 2022, 159:105389. doi:10.1016/j.neuint.2022.105389. |
[24] | MAI C L, WEI X, GUI W S, et al. Differential regulation of GSK-3β in spinal dorsal horn and in hippocampus mediated by interleukin-1beta contributes to pain hypersensitivity and memory deficits following peripheral nerve injury[J]. Mol Pain, 2019, 15:1744806919826789. doi:10.1177/1744806919826789. |
[25] | WANG Y, AN X, ZHANG X, et al. Lithium chloride ameliorates cognition dysfunction induced by sevoflurane anesthesia in rats[J]. FEBS Open Bio, 2020, 10(2):251-258. doi:10.1002/2211-5463.12779. |
[26] | 钱红月, 肖移生, 侯吉华, 等. 黄精丸对D-半乳糖和冈田酸所致学习记忆障碍小鼠海马Wnt/β-catenin信号通路相关蛋白表达的影响[J]. 中国实验方剂学杂志, 2021, 27(1):63-71. |
QIAN H Y, XIAO Y S, HOU J H, et al. Effect of Huangjingwan on expressions of Wnt/β-catenin signal pathway-associated proteins in hippocampus of mice with Alzheimer's Disease induced by D-galactose and okadaic acid with learning and memory disorders[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(1):63-71. doi:10.13422/j.cnki.syfjx.20201876. | |
[27] | ZHOU H, LIU Y, SUN L, et al. Salvianolic acid B activates Wnt/β-catenin signaling following spinal cord injury[J]. Exp Ther Med, 2020, 19(2):825-832. doi:10.3892/etm.2019.8292. |
[28] | WANG B, KHAN S, WANG P, et al. A Highly Selective GSK-3β Inhibitor CHIR99021 promotes osteogenesis by activating canonical and autophagy-mediated Wnt signaling[J]. Front Endocrinol(Lausanne), 2022, 13:926622. doi:10.3389/fendo.2022.926622. |
[29] | KHURANA C, BEDI O. Proposed hypothesis of GSK-3β inhibition for stimulating Wnt/β-catenin signaling pathway which triggers liver regeneration process[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(3):377-380. doi:10.1007/s00210-022-02207-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||