Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (3): 327-330.doi: 10.11958/20230617
• Review • Previous Articles Next Articles
FAN Hui1(), MA Yu2, LI Ximing2,3,△(
)
Received:
2023-04-22
Revised:
2023-08-08
Published:
2024-03-15
Online:
2024-03-13
Contact:
△E-mail: FAN Hui, MA Yu, LI Ximing. Research progress in the prevention of contrast-related acute kidney injury[J]. Tianjin Medical Journal, 2024, 52(3): 327-330.
CLC Number:
纳米颗粒类型 | 特性 |
---|---|
壳聚糖纳米颗粒 | |
硫酸化壳聚糖 | Fe2+螯合能力和抗氧化活性 |
含有姜黄素的壳聚糖纳米颗粒 | 姜黄素具有肾保护作用;抑制氧化损伤 |
负载芒果苷的壳聚糖纳米颗粒 | 增强药物溶解度,提高生物利用度,清除氧自由基,与过氧化氢酶和过氧化物酶等抗氧化酶协同 作用,保护肾上皮细胞免受氟化钠诱导的氧化损伤 |
SS31①偶联L-丝氨酸修饰壳聚糖前药 | 具有肾脏靶性和触发的药物释放,以保护线粒体免受损伤,减少氧化应激、炎症反应和细胞凋亡 |
负载SS31的pH响应性纳米颗粒 | 抑制氧化应激、炎症反应,保护线粒体结构;壳聚糖具有pH敏感性,能够在溶酶体中释放SS31,SS31具有线粒体靶向 |
pH响应性含氮氧化物自由基的 纳米颗粒 | 清除ROS和肾脏保护作用;抑制ROS生成,脂质过氧化和促炎细胞因子生成 |
无机纳米颗粒 | |
苯二铵基碳纳米点 | AKI肾脏特异性被动靶向和通过清除ROS的抗氧化治疗 |
金纳米颗粒 | 抗氧化、抗炎和抗血管生成能力 |
氧化钌纳米颗粒 | 多酶样抗氧化活性(例如过氧化氢酶、过氧化物酶,超氧化物歧化酶和谷胱甘肽过氧化物酶) |
脂质基纳米颗粒 | |
负载地塞米松的唾液酸修饰脂质 磷酸钙纳米颗粒 | 有效积累在AKI损伤的肾脏中;改善肾功能,降低促炎细胞因子水平、氧化应激和细胞凋亡 |
泼尼松龙负载脂质体 | 聚集在发炎的肾组织发挥抗炎作用 |
水凝胶 | |
负载生长因子的注射水凝胶 | 促进肾小管再生 |
肿瘤坏死因子-α中和抗体和肝细胞 生长因子共载水凝胶 | 改善血清生物标志物,肾小管再生,减少肾组织中促炎细胞和巨噬细胞浸润 |
Tab.1 Polymeric nanoparticle
纳米颗粒类型 | 特性 |
---|---|
壳聚糖纳米颗粒 | |
硫酸化壳聚糖 | Fe2+螯合能力和抗氧化活性 |
含有姜黄素的壳聚糖纳米颗粒 | 姜黄素具有肾保护作用;抑制氧化损伤 |
负载芒果苷的壳聚糖纳米颗粒 | 增强药物溶解度,提高生物利用度,清除氧自由基,与过氧化氢酶和过氧化物酶等抗氧化酶协同 作用,保护肾上皮细胞免受氟化钠诱导的氧化损伤 |
SS31①偶联L-丝氨酸修饰壳聚糖前药 | 具有肾脏靶性和触发的药物释放,以保护线粒体免受损伤,减少氧化应激、炎症反应和细胞凋亡 |
负载SS31的pH响应性纳米颗粒 | 抑制氧化应激、炎症反应,保护线粒体结构;壳聚糖具有pH敏感性,能够在溶酶体中释放SS31,SS31具有线粒体靶向 |
pH响应性含氮氧化物自由基的 纳米颗粒 | 清除ROS和肾脏保护作用;抑制ROS生成,脂质过氧化和促炎细胞因子生成 |
无机纳米颗粒 | |
苯二铵基碳纳米点 | AKI肾脏特异性被动靶向和通过清除ROS的抗氧化治疗 |
金纳米颗粒 | 抗氧化、抗炎和抗血管生成能力 |
氧化钌纳米颗粒 | 多酶样抗氧化活性(例如过氧化氢酶、过氧化物酶,超氧化物歧化酶和谷胱甘肽过氧化物酶) |
脂质基纳米颗粒 | |
负载地塞米松的唾液酸修饰脂质 磷酸钙纳米颗粒 | 有效积累在AKI损伤的肾脏中;改善肾功能,降低促炎细胞因子水平、氧化应激和细胞凋亡 |
泼尼松龙负载脂质体 | 聚集在发炎的肾组织发挥抗炎作用 |
水凝胶 | |
负载生长因子的注射水凝胶 | 促进肾小管再生 |
肿瘤坏死因子-α中和抗体和肝细胞 生长因子共载水凝胶 | 改善血清生物标志物,肾小管再生,减少肾组织中促炎细胞和巨噬细胞浸润 |
[1] | LUN Z, LIU J, LIU L, et al. Association of early and late contrast-associated acute kidney injury and long-term mortality in patients undergoing coronary angiography[J]. J Interv Cardiol, 2021, 2021:6641887. doi:10.1155/2021/6641887. |
[2] | MACH F, BAIGENT C, CATAPANO A L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk[J]. Eur Heart J,2020, 41(1):111-188. doi:10.1093/eurheartj/ehz455. |
[3] | TOSO A, LEONCINI M, MAIOLI M, et al. A prospective,randomized,open-label trial of atorvastatin versus rosuvastatin in the prevention of contrast-induced acute kidney injury,worsened renal function at 30 days,and clinical events after acute coronary angiography: the PRATO-ACS-2 Study[J]. Cardiorenal Med, 2020, 10(5):288-301. doi:10.1159/000506857. |
[4] | ZHANG F, LU Z, WANG F. Advances in the pathogenesis and prevention of contrast-induced nephropathy[J]. Life Sci, 2020, 259:118379. doi:10.1016/j.lfs.2020.118379. |
[5] | DAVENPORT M S, PERAZELLA M A, YEE J, et al. Use of intravenous iodinated contrast media in patients with kidney disease:consensus statements from the american college of radiology and the national kidney foundation[J]. Radiology, 2020, 294(3):660-668. doi:10.1148/radiol.2019192094. |
[6] | KUSIRISIN P, CHATTIPAKORN S C, CHATTIPAKORN N. Contrast-induced nephropathy and oxidative stress: mechanistic insights for better interventional approaches[J]. J Transl Med, 2020, 18(1):400. doi:10.1186/s12967-020-02574-8. |
[7] | SŮVA M, KALA P, POLOCZEK M, et al. Contrast-induced acute kidney injury and its contemporary prevention[J]. Front Cardiovasc Med, 2022, 9:1073072. doi:10.3389/fcvm.2022.1073072. |
[8] | GUPTA A, DOSEKUN A K, KUMAR V. Carbon dioxide-angiography for patients with peripheral arterial disease at risk of contrast-induced nephropathy[J]. World J Cardiol, 2020, 12(2):76-90. doi:10.4330/wjc.v12.i2.76. |
[9] | HEPBURN M, MULLAGURI N, BATTINENI A, et al. Fatal brain injury following carbon dioxide angiography[J]. J Stroke Cerebrovasc Dis, 2020, 29(12):105350. doi:10.1016/j.jstrokecerebrovasdis.2020.105350. |
[10] | WATANABE M, AONUMA K, MUROHARA T, et al. Prevention of contrast-induced nephropathy after cardiovascular catheterization and intervention with high-dose strong statin therapy in Japan - The PREVENT CINC-J Study[J]. Circ J, 2022, 86(9):1455-1463. doi:10.1253/circj.CJ-21-0869. |
[11] | MANSOOR K, SULIMAN M, AMRO M, et al. Protective effect of allopurinol in preventing contrast-induced nephropathy among patients undergoing percutaneous coronary intervention:a systematic review and meta-analysis[J]. Arch Med Sci Atheroscler Dis, 2021, 6:e196-e202. doi:10.5114/amsad.2021.112226. |
[12] | CORRIDON P R. Still finding ways to augment the existing management of acute and chronic kidney diseases with targeted gene and cell therapies:opportunities and hurdles[J]. Front Med (Lausanne), 2023, 10:1143028. doi:10.3389/fmed.2023.1143028. |
[13] | THAI H, KIM K R, HONG K T, et al. Kidney-targeted cytosolic delivery of siRNA using a small-sized mirror DNA tetrahedron for enhanced potency[J]. ACS Cent Sci, 2020, 6(12):2250-2258. doi:10.1021/acscentsci.0c00763. |
[14] | GAO J, LIU Y, JIANG B, et al. Phenylenediamine-based carbon nanodots alleviate acute kidney injury via preferential renal accumulation and antioxidant capacity[J]. ACS Appl Mater Interfaces, 2020, 12(28):31745-31756. doi:10.1021/acsami.0c05041. |
[15] | ZHANG D Y, TU T, YOUNIS M R, et al. Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury[J]. Theranostics, 2021, 11(20):9904-9917. doi:10.7150/thno.66518. |
[16] | ZHANG D Y, LIU H, RIZWAN Y M, et al. Ultrasmall platinum nanozymes as broad-spectrum antioxidants for theranostic application in acute kidney injury[J]. Chem Eng J, 2021, 421:129963. doi:10.1016/j.cej.2021.129963. |
[17] | ZHANG D Y, YOUNIS M R, LIU H, et al. Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management[J]. Biomaterials, 2021, 271:120706. doi:10.1016/j.biomaterials.2021.120706. |
[18] | ZHAO Y, PU M, WANG Y, et al. Application of nanotechnology in acute kidney injury: From diagnosis to therapeutic implications[J]. J Control Release, 2021, 336:233-251. doi:10.1016/j.jconrel.2021.06.026. |
[19] | MA Y, ZHA L, ZHANG Q, et al. Effect of PCSK9 inhibitor on contrast-induced acute kidney injury in patients with acute myocardial infarction undergoing intervention therapy[J]. Cardiol Res Pract, 2022, 2022:1638209. doi:10.1155/2022/1638209. |
[20] | FU H, ZHANG J, ZHANG H, et al. Trimetazidine can prevent the occurrence of contrast-induced nephropathy after percutaneous coronary intervention in elderly patients with renal insufficiency[J]. Perfusion, 2021, 36(6):603-609. doi:10.1177/0267659120957856. |
[21] | BOTTINOR W, CHAWLA R, DANYI P, et al. Intravenous fluid therapy is associated with a reduced incidence of contrast-induced nephropathy but not with a reduced long-term incidence of renal dysfunction after cardiac catheterization[J]. Cardiovasc Revasc Med, 2020, 21(1):20-23. doi:10.1016/j.carrev.2019.07.020. |
[22] | PIOLI M R, COUTO R M, FRANCISCO J A, et al. Effectiveness of oral hydration in preventing contrast-induced nephropathy in individuals undergoing elective coronary interventions[J]. Arq Bras Cardiol, 2023, 120(2):e20220529. doi:10.36660/abc.20220529. |
[23] | BARRETT T, KHWAJA A, CARMONA C, et al. Acute kidney injury:prevention,detection,and management. Summary of updated NICE guidance for adults receiving iodine-based contrast media[J]. Clin Radiol, 2021, 76(3):193-199. doi:10.1016/j.crad.2020.08.039. |
[24] | BRIGUORI C, D'AMORE C, De MICCO F, et al. Left ventricular end-diastolic pressure versus urine flow rate-guided hydration in preventing contrast-associated acute kidney injury[J]. JACC Cardiovasc Interv, 2020, 13(17):2065-2074. doi:10.1016/j.jcin.2020.04.051. |
[25] | BRAR S S, AHARONIAN V, MANSUKHANI P, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial[J]. Lancet, 2014, 383(9931):1814-1823. doi:10.1016/S0140-6736(14)60689-9. |
[26] | MAULER-WITTWER S, SIEVERT H, IOPPOLO A M, et al. Study evaluating the use of RenalGuard to protect patients at high risk of AKI[J]. JACC Cardiovasc Interv, 2022, 15(16):1639-1648. doi:10.1016/j.jcin.2022.05.036. |
[1] | LIU Xiaoyan, BU Rui, LU Jianfei, DING Yu, ZHANG Xing. Value of Sonazoid contrast-enhanced ultrasound for preoperatively evaluating pathological grade of hepatocellular carcinoma [J]. Tianjin Medical Journal, 2024, 52(6): 658-662. |
[2] | WANG Xiaoyi, WANG Xinyu, ZHANG Xuening, LI Jing. Study of rhenium sulfide nanoparticles in spectral CT imaging and photothermal therapy [J]. Tianjin Medical Journal, 2023, 51(8): 883-887. |
[3] | GENG Yongzhi, YANG Li, LI Guowei, ZHANG Jintao, CHENG Xiaolei, TAN Liduan. Study on the improvement effect and mechanism of nobiletin on rats with acute kidney injury [J]. Tianjin Medical Journal, 2023, 51(5): 498-503. |
[4] | LIU Zhufeng, WANG Wenhong, FAN Shuying, LIU Yan, LIU Tao, WANG Xin, WU Xia. Protective effect of Klotho protein on acute renal injury and fibrosis in rats with ischemia-reperfusion [J]. Tianjin Medical Journal, 2023, 51(4): 371-375. |
[5] | HAN Chuyi, CONG Hongliang, WANG Le, ZHANG Jingxia. Prediction of risk factors for hypothyroidism in NSTE-ACS patients exposed to iodine contrast media [J]. Tianjin Medical Journal, 2023, 51(4): 422-426. |
[6] | JIN Heng, LIU Qihui, SUN Keke, SONG Jie, LYU Qi, ZHANG Yan. Advances in complications and management of rhabdomyolysis [J]. Tianjin Medical Journal, 2023, 51(3): 329-332. |
[7] | GUAN Guanghui, PU Qinhua, QIAN Hebu. Correlation between serum levels of MMP-13, VASH-1 and prognosis in patients with sepsis complicated with acute kidney injury [J]. Tianjin Medical Journal, 2023, 51(12): 1360-1264. |
[8] | CHEN Dandan, WAN Yeda, HE Hui, LIU Yan. Preliminary research of contrast enhanced ultrasound in evaluating the survival value of allotopic autotransplantation [J]. Tianjin Medical Journal, 2022, 50(9): 980-983. |
[9] | HAN Chuyi, ZHANG Jingxia, CONG Hongliang. Research progress on etiology and clinical characteristics of ICM-induced hypothyroidism [J]. Tianjin Medical Journal, 2022, 50(11): 1222-1226. |
[10] | JIN Ju-ying, LIU Dan, MIN Su. Effects of crystalloid or colloid for intraoperative goal-directed fluid therapy on postoperative complications in patients undergoing gastrointestinal surgery [J]. Tianjin Medical Journal, 2021, 49(8): 852-856. |
[11] | ZHANG Yan, JIN Heng, CAO Chao, SHOU Song-tao△. The value of uNGAL combined with urinary NAG in the evaluating the severity and prognosis of critically ill patients with acute kidney injury [J]. Tianjin Medical Journal, 2021, 49(5): 495-498. |
[12] | AN Li-ping, WANG Wei, YANG Hong-xia, AN Ran, YU Kun, WU Guang-li, LI Yun-feng. The protective effect of anisodamine on acute renal injury induced by rhabdomyolysis in rats [J]. Tianjin Medical Journal, 2021, 49(4): 364-370. |
[13] | TANCheng-wei, ZHUZhao-qiong△, DONGLiang, LIUDe-hang. The effect of preoperative oral multi-dimensional carbohydrates on painless colonoscopy in elderly patients [J]. Tianjin Medical Journal, 2021, 49(3): 315-319. |
[14] | WANG Meng, Paligu·Maimaitili, LI Hui, LYU Chuan-feng. Effects of rhynchophylline solid lipid nanoparticles on miR-155/p38 MAPK axis in asthmatic mice [J]. Tianjin Medical Journal, 2021, 49(11): 1154-1158. |
[15] | WANG Duo-duo, HUANG Chun-xia, LI Yun, XU Xing-mei, TANG Jia, HU Xian-wen△. The effect of different intraoperative fluid therapy on postoperative delirium in patients undergoing spinal surgery [J]. Tianjin Medical Journal, 2021, 49(1): 64-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||