[1] |
中华医学会外科学分会胰腺外科学组. 中国急性胰腺炎诊治指南(2021)[J]. 浙江实用医学, 2021, 26(6):511-519,535.
|
|
Chinese Pancreatic Surgery Association,Chinese Society of Surgery,Chinese Medical Association. Guidelines for diagnosis and treatment of acute pancreatitis in China (2021)[J]. Zhejiang Practical Medicine, 2021, 26(6):511-519,535. doi:10.16794/j.cnki.cn33-1207/r.2021.06.003.
|
[2] |
张雪奇, 兑秋李, 张云娜, 等. 急性胰腺炎的中医药治疗知识图谱可视化分析[J]. 中国中西医结合外科杂志, 2023, 29(6):746-752.
|
|
ZHANG X Q, DUI Q L, ZHANG Y N, et al. Visual analysis of knowledge graph of traditional Chinese medicine treatment of acute pancreatitis[J]. Chinese Journal of Surgery of Integrated Traditional and Western Medicine, 2023, 29(6):746-752. doi:10.3969/j.issn.1007-6948.2023.05.005.
|
[3] |
ZEREM E, KURTCEHAJIC A, KUNOSIĆ S, et al. Current trends in acute pancreatitis:diagnostic and therapeutic challenges[J]. World J Gastroenterol, 2023, 29(18):2747-2763. doi:10.3748/wjg.v29.i18.2747.
|
[4] |
LU Y Y, LI B Q, WEI M, et al. HDL inhibits pancreatic acinar cell NLRP3 inflammasome activation and protect against acinar cell pyroptosis in acute pancreatitis[J]. Int Immunopharmacol, 2023, 125(Pt A):110950. doi:10.1016/j.intimp.2023.110950.
|
[5] |
BARRERA GUTIERREZ J C, GREENBURG I, SHAH J, et al. Severe acute pancreatitis prediction:a model derived from a prospective registry cohort[J]. Cureus, 2023, 15(10):e46809. doi:10.7759/cureus.46809.
|
[6] |
LIU Y, CUI H, MEI C, et al. Sirtuin4 alleviates severe acute pancreatitis by regulating HIF-1α/HO-1 mediated ferroptosis[J]. Cell Death Dis, 2023, 14(10):694. doi:10.1038/s41419-023-06216-x.
|
[7] |
LI L, ZHANG Q, FENG Y, et al. A novel serum exosomal miRNA signature in the early prediction of persistent organ failure in patients with acute pancreatitis[J]. Ann Surg, 2024 Feb 7. doi: 10.1097/SLA.0000000000006229. Online ahead of print.
|
[8] |
CHEN G, WANG X, LIAO Q, et al. Structural basis for recognition of N-formyl peptides as pathogen-associated molecular patterns[J]. Nat Commun, 2022, 13(1):5232. doi:10.1038/s41467-022-32822-y.
|
[9] |
D'AMICO R, FUSCO R, CORDARO M, et al. Modulation of NLRP3 inflammasome through formyl peptide receptor 1 (FPR-1) pathway as a new therapeutic target in bronchiolitis obliterans syndrome[J]. Int J Mol Sci, 2020, 21(6):2144. doi:10.3390/ijms21062144.
|
[10] |
CHEN T, XIONG M, ZONG X, et al. Structural basis of ligand binding modes at the human formyl peptide receptor 2[J]. Nat Commun, 2020, 11(1):1208. doi:10.1038/s41467-020-15009-1.
|
[11] |
TSAI Y F, YANG S C, CHANG W Y, et al. Garcinia multiflora inhibits FPR1-mediated neutrophil activation and protects against acute lung injury[J]. Cell Physiol Biochem, 2018, 51(6):2776-2793. doi:10.1159/000495970.
|
[12] |
肖懿, 张桂贤, 高瑞芳, 等. 重症急性胰腺炎大鼠血浆中6种线粒体N-甲酰肽及胰腺FPR1的表达研究[J]. 天津医药, 2022, 50(2):150-154.
|
|
XIAO Y, ZHANG G X, GAO R F, et al. The expression of six kinds of mitochondrial N-formyl peptides in plasma and pancreatic FPR1 in severe acute pancreatitis rats[J]. Tianjin Med J, 2022, 50(2):150-154. doi:10.11958/20211715.
|
[13] |
胡泉东, 杨玉娟, 余珊珊. 脂氧素受体激动剂BML-111对大鼠急性肝损伤的干预作用及其机制[J]. 中国应用生理学杂志, 2020, 36(5):494-498,532.
|
|
HU Q D, YANG Y J, YU S S. Intervention effect of lipoxygen receptor agonist BML-111 on acute liver injury in rats and its mechanism[J]. Chin J Appl Physiol, 2020, 36(5):494-498,532. doi:10.12047/j.cjap.5990.2020.105.
|
[14] |
肖懿, 冯志乔, 张桂贤, 等. 血必净注射液调节线粒体N-甲酰肽/NLRP3炎症通路对重症急性胰腺炎大鼠模型的治疗机制[J]. 中国实验方剂学杂志, 2022, 28(7):88-94.
|
|
XIAO Y, FENG Z Q, ZHANG G X, et al. Xuebijing injection regulates mitochondrial N-formyl peptides/NLRP3 inflammatory pathway to treat severe acute pancreatitis in rats[J]. Chin J Exp Tradit Med Form, 2022, 28(7):88-94. doi:10.13422/j.cnki.syfjx.20220738.
|
[15] |
ITAGAKI K, KACZMAREK E, KWON W Y, et al. Formyl peptide receptor-1 blockade prevents receptor regulation by mitochondrial danger-associated molecular patterns and preserves neutrophil function after trauma[J]. Crit Care Med, 2020, 48(2):e123-e132. doi:10.1097/CCM.0000000000004094.
|
[16] |
WINTHER M, DAHLGREN C, FORSMAN H. Formyl peptide receptors in mice and men:similarities and differences in recognition of conventional ligands and modulating lipopeptides[J]. Basic Clin Pharmacol Toxicol, 2018, 122(2):191-198. doi:10.1111/bcpt.12903.
|
[17] |
ABOUELASRAR SALAMA S, GOUWY M, VAN DAMME J, et al. Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands[J]. Front Endocrinol (Lausanne), 2023, 14:1119227. doi:10.3389/fendo.2023.1119227.
|
[18] |
QIN C X, NORLING L V, VECCHIO E A, et al. Formylpeptide receptor 2:nomenclature,structure,signalling and translational perspectives:IUPHAR review 35[J]. Br J Pharmacol, 2022, 179(19):4617-4639. doi:10.1111/bph.15919.
|
[19] |
WEN X, XU X, SUN W, et al. G-protein-coupled formyl peptide receptors play a dual role in neutrophil chemotaxis and bacterial phagocytosis[J]. Mol Biol Cell, 2019, 30(3):346-356. doi:10.1091/mbc.E18-06-0358.
|
[20] |
CAO Y, LI F, SUN Z, et al. Regulation of microtubule stability in pulmonary microvascular endothelial cells in rats with severe acute pancreatitis:Qingyi decoction is a potential CDK5 inhibitor[J]. J Inflamm Res, 2024, 17:2513-2530. doi:10.2147/JIR.S451755.
|
[21] |
FAN J H, LUO N, LIU G F, et al. Mechanism of annexin A1/N-formylpeptide receptor regulation of macrophage function to inhibit hepatic stellate cell activation through Wnt/β-catenin pathway[J]. World J Gastroenterol, 2023, 29(22):3422-3439. doi:10.3748/wjg.v29.i22.3422.
|
[22] |
FORSMAN H, WU Y L, MÅRTENSSON J, et al. AZ2158 is a more potent formyl peptide receptor 1 inhibitor than the commonly used peptide antagonists in abolishing neutrophil chemotaxis[J]. Biochem Pharmacol, 2023, 211:115529. doi:10.1016/j.bcp.2023.115529.
|