Tianjin Medical Journal ›› 2025, Vol. 53 ›› Issue (4): 349-354.doi: 10.11958/20241809
• Experimental Research • Previous Articles Next Articles
HAO Yanyan1(), ZHANG Yu2, BAI Yaowu, SHI Donghai1,△(
)
Received:
2024-11-11
Revised:
2025-02-06
Published:
2025-04-15
Online:
2025-04-17
Contact:
△ E-mail:HAO Yanyan, ZHANG Yu, BAI Yaowu, SHI Donghai. Effects of remimazolam regulating the Nrf2/GPX4 pathway on circulatory function in septic shock rats[J]. Tianjin Medical Journal, 2025, 53(4): 349-354.
CLC Number:
组别 | MAP/mmHg | HR/(次/min) | Lac/(mmol/L) |
---|---|---|---|
对照组 | 98.17±2.41 | 317.50±12.65 | 1.86±0.31 |
模型组 | 47.00±3.16a | 490.42±18.43a | 4.90±0.57a |
地塞米松组 | 85.42±2.64b | 336.92±17.30b | 2.39±0.36b |
瑞马唑仑低剂量组 | 69.00±2.49bc | 444.58±13.28bc | 4.11±0.51bc |
瑞马唑仑高剂量组 | 83.67±4.08bd | 347.42±14.58bd | 2.52±0.40bd |
瑞马唑仑高剂量+ML385组 | 55.50±4.30e | 470.50±13.60e | 4.60±0.54e |
F | 213.415** | 150.423** | 47.693** |
Tab.1 各组大鼠MAP、HR和血清Lac水平比较 (n=12,$\bar{x} \pm s$)
组别 | MAP/mmHg | HR/(次/min) | Lac/(mmol/L) |
---|---|---|---|
对照组 | 98.17±2.41 | 317.50±12.65 | 1.86±0.31 |
模型组 | 47.00±3.16a | 490.42±18.43a | 4.90±0.57a |
地塞米松组 | 85.42±2.64b | 336.92±17.30b | 2.39±0.36b |
瑞马唑仑低剂量组 | 69.00±2.49bc | 444.58±13.28bc | 4.11±0.51bc |
瑞马唑仑高剂量组 | 83.67±4.08bd | 347.42±14.58bd | 2.52±0.40bd |
瑞马唑仑高剂量+ML385组 | 55.50±4.30e | 470.50±13.60e | 4.60±0.54e |
F | 213.415** | 150.423** | 47.693** |
组别 | NO/(μmol/L) | ET-1/(ng/L) |
---|---|---|
对照组 | 14.27±2.31 | 5.52±1.03 |
模型组 | 56.30±4.24a | 18.44±1.99a |
地塞米松组 | 24.15±3.08b | 8.39±1.17b |
瑞马唑仑低剂量组 | 39.42±3.76bc | 13.69±1.52bc |
瑞马唑仑高剂量组 | 26.93±3.25bd | 9.02±1.31bd |
瑞马唑仑高剂量+ML385组 | 48.60±4.10e | 15.74±1.68e |
F | 123.114** | 66.340** |
Tab.2 各组大鼠血清NO、ET-1水平比较 (n=12,$\bar{x} \pm s$)
组别 | NO/(μmol/L) | ET-1/(ng/L) |
---|---|---|
对照组 | 14.27±2.31 | 5.52±1.03 |
模型组 | 56.30±4.24a | 18.44±1.99a |
地塞米松组 | 24.15±3.08b | 8.39±1.17b |
瑞马唑仑低剂量组 | 39.42±3.76bc | 13.69±1.52bc |
瑞马唑仑高剂量组 | 26.93±3.25bd | 9.02±1.31bd |
瑞马唑仑高剂量+ML385组 | 48.60±4.10e | 15.74±1.68e |
F | 123.114** | 66.340** |
组别 | TNF-α/(ng/L) | IL-1β/(ng/L) | IL-6/(ng/L) |
---|---|---|---|
对照组 | 45.60±5.72 | 22.48±4.19 | 27.75±5.21 |
模型组 | 149.44±9.83a | 97.30±8.06a | 126.49±10.30a |
地塞米松组 | 66.32±6.40b | 38.65±5.25b | 44.38±6.45b |
瑞马唑仑低剂量组 | 101.25±9.29bc | 77.24±7.13bc | 89.20±9.10bc |
瑞马唑仑高剂量组 | 70.41±7.35bd | 42.18±6.22bd | 50.69±7.28bd |
瑞马唑仑高剂量+ML385组 | 120.23±9.64e | 85.67±7.90e | 107.83±9.92e |
F | 133.122** | 124.447** | 135.321** |
Tab.3 各组大鼠血清TNF-α、IL-1β和IL-6水平比较 (n=12,$\bar{x} \pm s$)
组别 | TNF-α/(ng/L) | IL-1β/(ng/L) | IL-6/(ng/L) |
---|---|---|---|
对照组 | 45.60±5.72 | 22.48±4.19 | 27.75±5.21 |
模型组 | 149.44±9.83a | 97.30±8.06a | 126.49±10.30a |
地塞米松组 | 66.32±6.40b | 38.65±5.25b | 44.38±6.45b |
瑞马唑仑低剂量组 | 101.25±9.29bc | 77.24±7.13bc | 89.20±9.10bc |
瑞马唑仑高剂量组 | 70.41±7.35bd | 42.18±6.22bd | 50.69±7.28bd |
瑞马唑仑高剂量+ML385组 | 120.23±9.64e | 85.67±7.90e | 107.83±9.92e |
F | 133.122** | 124.447** | 135.321** |
组别 | 血管内皮 细胞凋亡率/% | ROS/ (平均荧光强度) | ||
---|---|---|---|---|
对照组 | 3.40±0.62 | 55.74±6.82 | ||
模型组 | 17.82±1.13a | 190.60±10.34a | ||
地塞米松组 | 6.95±0.80b | 84.95±8.15b | ||
瑞马唑仑低剂量组 | 12.04±0.91bc | 136.27±9.61bc | ||
瑞马唑仑高剂量组 | 7.32±0.85bd | 90.18±8.32bd | ||
瑞马唑仑高剂量+ML385组 | 14.11±1.02e | 165.35±10.17e | ||
F | 208.706** | 201.233** | ||
组别 | MDA/ (nmol/mg) | SOD/ (U/mg) | ||
对照组 | 5.95±0.80 | 38.60±4.15 | ||
模型组 | 14.46±1.52a | 12.75±2.30a | ||
地塞米松组 | 7.18±0.93b | 30.22±3.26b | ||
瑞马唑仑低剂量组 | 10.69±1.26bc | 18.18±2.79bc | ||
瑞马唑仑高剂量组 | 7.55±1.01bd | 28.95±3.10bd | ||
瑞马唑仑高剂量+ML385组 | 11.89±1.33e | 15.40±2.84e | ||
F | 46.962** | 62.754** |
Tab.4 各组大鼠血管内皮细胞凋亡率、ROS水平、MDA含量和SOD活性比较比较 (n=12,$\bar{x} \pm s$)
组别 | 血管内皮 细胞凋亡率/% | ROS/ (平均荧光强度) | ||
---|---|---|---|---|
对照组 | 3.40±0.62 | 55.74±6.82 | ||
模型组 | 17.82±1.13a | 190.60±10.34a | ||
地塞米松组 | 6.95±0.80b | 84.95±8.15b | ||
瑞马唑仑低剂量组 | 12.04±0.91bc | 136.27±9.61bc | ||
瑞马唑仑高剂量组 | 7.32±0.85bd | 90.18±8.32bd | ||
瑞马唑仑高剂量+ML385组 | 14.11±1.02e | 165.35±10.17e | ||
F | 208.706** | 201.233** | ||
组别 | MDA/ (nmol/mg) | SOD/ (U/mg) | ||
对照组 | 5.95±0.80 | 38.60±4.15 | ||
模型组 | 14.46±1.52a | 12.75±2.30a | ||
地塞米松组 | 7.18±0.93b | 30.22±3.26b | ||
瑞马唑仑低剂量组 | 10.69±1.26bc | 18.18±2.79bc | ||
瑞马唑仑高剂量组 | 7.55±1.01bd | 28.95±3.10bd | ||
瑞马唑仑高剂量+ML385组 | 11.89±1.33e | 15.40±2.84e | ||
F | 46.962** | 62.754** |
组别 | Nrf2/Lamin B1 | GPX4/GAPDH |
---|---|---|
对照组 | 0.57±0.06 | 0.73±0.08 |
模型组 | 0.20±0.03a | 0.25±0.04a |
地塞米松组 | 0.45±0.06b | 0.60±0.07b |
瑞马唑仑低剂量组 | 0.31±0.04bc | 0.39±0.05bc |
瑞马唑仑高剂量组 | 0.42±0.05bd | 0.56±0.06bd |
瑞马唑仑高剂量+ML385组 | 0.25±0.04e | 0.32±0.05e |
F | 99.902** | 113.706** |
Tab.5 各组大鼠血管组织Nrf2、GPX4蛋白水平比较 (n=12,$\bar{x} \pm s$)
组别 | Nrf2/Lamin B1 | GPX4/GAPDH |
---|---|---|
对照组 | 0.57±0.06 | 0.73±0.08 |
模型组 | 0.20±0.03a | 0.25±0.04a |
地塞米松组 | 0.45±0.06b | 0.60±0.07b |
瑞马唑仑低剂量组 | 0.31±0.04bc | 0.39±0.05bc |
瑞马唑仑高剂量组 | 0.42±0.05bd | 0.56±0.06bd |
瑞马唑仑高剂量+ML385组 | 0.25±0.04e | 0.32±0.05e |
F | 99.902** | 113.706** |
[1] | 肖泽让, 何书典, 邢柏. 老年脓毒性休克患者进展为慢重症的列线图预测模型的构建及验证[J]. 天津医药, 2022, 50(12):1310-1315. |
XIAO Z R, HE S D, XING B. Construction and validation of a nomogram prediction model for the progression to chronic critical illness in elderly patients with septic shock[J]. Tianjin Med J, 2022, 50(12):1310-1315. doi:10.11958/20220519. | |
[2] | MOSCHOPOULOS C D, DIMOPOULOU D, DIMOPOULOU A, et al. New insights into the fluid management in patients with septic shock[J]. Medicina(Kaunas), 2023, 59(6):1047. doi:10.3390/medicina59061047. |
[3] | BURGDORFF A M, BUCHER M, SCHUMANN J. Vasoplegia in patients with sepsis and septic shock:pathways and mechanisms[J]. J Int Med Res, 2018, 46(4):1303-1310. doi:10.1177/0300060517743836. |
[4] | LAMBDEN S, CREAGH-BROWN B C, HUNT J, et al. Definitions and pathophysiology of vasoplegic shock[J]. Crit Care, 2018, 22(1):174. doi:10.1186/s13054-018-2102-1. |
[5] | SACHA G L, LAM S W, WANG L, et al. Association of catecholamine dose,lactate,and shock duration at vasopressin initiation with mortality in patients with septic shock[J]. Crit Care Med, 2022, 50(4):614-623. doi:10.1097/CCM.0000000000005317. |
[6] | ZHOU Z, YANG Y, WEI Y, et al. Remimazolam attenuates LPS-derived cognitive dysfunction via subdiaphragmatic vagus nerve target α7nAChR-mediated Nrf2/HO-1 signal pathway[J]. Neurochem Res, 2024, 49(5):1306-1321. doi:10.1007/s11064-024-04115-x. |
[7] | 肖锦亮, 汪威廉, 但家朋. 瑞马唑仑调节EPAC1/RAP1信号通路对急性心肌梗死大鼠心肌损伤的影响[J]. 天津医药, 2024, 52(5):475-480. |
XIAO J L, WANG W L, DAN J P. Effect of remimazolam on myocardial injury in rats with acute myocardial infarction by regulating the EPAC1/RAP1 signaling pathway[J]. Tianjin Med J, 2024, 52(5):475-480. doi:10.11958/20230890. | |
[8] | XU S, WU B, ZHONG B, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4(GPX4)axis to inhibit ferroptosis[J]. Bioengineered, 2021, 12(2):10924-10934. doi:10.1080/21655979.2021.1995994. |
[9] | SHEN K, WANG X, WANG Y, et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury[J]. Redox Biol, 2023,62:102655. doi:10.1016/j.redox.2023.102655. |
[10] | ZOU X, LIU C, HUANG Z, et al. Inhibition of STEAP1 ameliorates inflammation and ferroptosis of acute lung injury caused by sepsis in LPS-induced human pulmonary microvascular endothelial cells[J]. Mol Biol Rep, 2023, 50(7):5667-5674. doi:10.1007/s11033-023-08403-7. |
[11] | 王德勇, 涂英兵, 袁娟, 等. 基于PERK/Nrf2/HO-1信号通路研究瑞马唑仑对心肌缺血再灌注损伤大鼠铁死亡的影响[J]. 现代生物医学进展, 2023, 23(23):4427-4433. |
WANG D Y, TU Y B, YUAN J, et al. Study on the effect of remifentanil on ferroptosis in rats with myocardial ischemia-reperfusion injury based on the PERK/Nrf2/HO-1 signaling pathway[J]. Advances in Modern Biomedicine, 2023, 23(23):4427-4433. doi:10.13241/j.cnki.pmb.2023.23.005. | |
[12] | 杨淼, 刘玉玉, 李淑娟. 黄芪注射液对脓毒性休克大鼠循环功能的影响[J]. 河北医药, 2011, 33(12):1789-1791. |
YANG M, LIU Y Y, LI S J. The effect of Huangqi injection on circulatory function in septic shock rats[J]. Hebei Medicine, 2011, 33(12):1789-1791. doi:10.3969/j.issn.1002-7386.2011.12.012. | |
[13] | 田加坤, 陈星海, 张敏, 等. 不同剂量液体复苏对脓毒性休克大鼠炎症因子调控及安全性评价[J]. 中国实验诊断学, 2019, 23(1):128-132. |
TIAN J K, CHEN X H, ZHANG M, et al. Regulation of inflammatory factors and safety evaluation of different doses of liquid resuscitation in septic shock rats[J]. Chinese Journal of Experimental Diagnosis, 2019, 23(1):128-132. doi:10.3969/j.issn.1007-4287.2019.01.052. | |
[14] | 陈少忠, 林梅瑟, 程黎民, 等. 红景天苷注射液对脂多糖诱导脓毒性休克肺损伤大鼠肺血管通透性的影响[J]. 中国临床药理学与治疗学, 2019, 24(11):1256-1262. |
CHEN S Z, LIN M S, CHENG L M, et al. The effect of salidroside injection on pulmonary vascular permeability in rats with lipopolysaccharide induced septic shock and lung injury[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(11):1256-1262. doi:10.12092/j.issn.1009-2501.2019.11.007. | |
[15] | 甄磊, 张懿兰, 王晓娜, 等. 瑞马唑仑减轻心肌缺血/再灌注大鼠心肌损伤[J]. 基础医学与临床, 2024, 44(9):1243-1248. |
ZHEN L, ZHANG Y L, WANG X N, et al. Rimazolen alleviates myocardial injury in rats with myocardial ischemia/reperfusion[J]. Basic Medicine & Clinical, 2024, 44(9):1243-1248. doi:10.16352/j.issn.1001-6325.2024.09.1243. | |
[16] | 冯秀晶, 辛秀, 黄静, 等. 绿原酸对脓毒症致大鼠急性肾损伤的保护作用[J]. 中国兽医杂志, 2022, 58(5):64-70. |
FENG X J, XIN X, HUANG J, et al. The protective effect of chlorogenic acid on acute kidney injury induced by sepsis in rats[J]. Chinese Journal of Veterinary Medicine, 2022, 58(5):64-70. doi:10.13881/j.cnki.hljxmsy.2022.02.0113. | |
[17] | FOSTER D M, KELLUM J A. Endotoxic septic shock:diagnosis and treatment[J]. Int J Mol Sci, 2023, 24(22):16185. doi:10.3390/ijms242216185. |
[18] | YANG X, ZHOU Y, LIU A, et al. Relationship between dynamic changes of microcirculation flow, tissue perfusion parameters, and lactate level and mortality of septic shock in ICU[J]. Contrast Media Mol Imaging, 2022,2022:1192902. doi:10.1155/2022/1192902. |
[19] | BJÖRCK V, ANDERSSON L, PÅHLMAN L I, et al. Commercial albumin solution enhances endotoxin-induced vasoplegia and inflammation[J]. Acta Anaesthesiol Scand, 2020, 64(7):982-991. doi:10.1111/aas.13598. |
[20] | ARIAS F, FRANCO-MONTALBAN F, ROMERO M, et al. Bioactive imidamide-based compounds targeted against nitric oxide synthase[J]. Bioorg Chem, 2022,120:105637. doi:10.1016/j.bioorg.2022.105637. |
[21] | FERREIRA ALVES G, AIMARETTI E, DA SILVEIRA HAHMEYER M L, et al. Pharmacological inhibition of CK2 by silmitasertib mitigates sepsis-induced circulatory collapse,thus improving septic outcomes in mice[J]. Biomed Pharmacother, 2024,178:117191. doi:10.1016/j.biopha.2024.117191. |
[22] | ZHANG Z S, CHEN W, LI T, et al. Organ-specific changes in vascular reactivity and roles of inducible nitric oxide synthase and endothelin-1 in a rabbit endotoxic shock model[J]. J Trauma Acute Care Surg, 2018, 85(4):725-733. doi:10.1097/TA.0000000000002036. |
[23] | LIU X, LIN S, ZHONG Y, et al. Remimazolam protects against LPS-induced endotoxicity improving survival of endotoxemia mice[J]. Front Pharmacol, 2021,12:739603. doi:10.3389/fphar.2021.739603. |
[24] | JOFFRE J, HELLMAN J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation[J]. Antioxid Redox Signal, 2021, 35(15):1291-1307. doi:10.1089/ars.2021.0027. |
[25] | LAI K, SONG C, GAO M, et al. Uridine alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage[J]. Int J Mol Sci, 2023, 24(6):5093. doi:10.3390/ijms24065093. |
[26] | HOU H, QIN X, LI G, et al. Nrf2-mediated redox balance alleviates LPS-induced vascular endothelial cell inflammation by inhibiting endothelial cell ferroptosis[J]. Sci Rep, 2024, 14(1):3335. doi:10.1038/s41598-024-53976-3. |
[1] | MIAO Yan, ZHU Lei, FAN Yuanhui. Effect of remimazolam on recovery quality of children with strabismus surgery under general anesthesia [J]. Tianjin Medical Journal, 2025, 53(4): 425-428. |
[2] | ZHANG Xungong, YANG Guanghui, DU Zengli, XUE Pei, MA Zikun. Correlation between ferroptosis and post operative cognitive dysfunction in elderly patients with fractures [J]. Tianjin Medical Journal, 2025, 53(1): 47-51. |
[3] | LI Xin, LI Xue, WANG An. Effects of chrysotile on expression of Wnt5a, p16 and p21 in endothelial cells [J]. Tianjin Medical Journal, 2024, 52(7): 679-682. |
[4] | YANG Rui, WEI Qiong, SUN Yikun, ZHAO Mengzhu, CHENG Xu, LIU Menghua, ZHANG Dongmei. Effects of hypoxia H9c2 exosome on proliferation,migration and tube formation of HUVEC [J]. Tianjin Medical Journal, 2024, 52(7): 714-719. |
[5] | XIAO Jinliang, WANG Weilian, DAN Jiapeng. Effect of remimazolam on myocardial injury in rats with acute myocardial infarction by regulating the EPAC1/RAP1 signaling pathway [J]. Tianjin Medical Journal, 2024, 52(5): 475-479. |
[6] | ZHANG Guiting, HE Chao. Mechanism of oxLDL/β2GPⅠ/aβ2GPⅠ complex promoting the angiogenesis in vascular endothelial cells through TLR4//MyD88/NF-κB signaling pathway [J]. Tianjin Medical Journal, 2024, 52(11): 1131-1136. |
[7] | LONG Hua, CHEN Yifei, WANG Qingshu. Effect of remimazolam on apoptosis of intestinal epithelial cells in burned rats by regulating TLR4/MyD88/NF-κB signaling pathway [J]. Tianjin Medical Journal, 2024, 52(11): 1152-1157. |
[8] | TIAN Yajing, YANG Xue, WANG Jing, GE Wenjie, HE Yuling. Influence of formononetin on oxidative stress injury in gestational diabetes mellitus rats [J]. Tianjin Medical Journal, 2023, 51(7): 734-738. |
[9] | ZUO Xinmeng, WANG Zhenhua, GAO Liping. Experimental study of vascular extracellular matrix gel promoting the differentiation of bone marrow CD34+ progenitor cells into endothelial cells [J]. Tianjin Medical Journal, 2023, 51(3): 225-229. |
[10] | SU Xiaoxue, LI Jing, ZHAO Wei, LIU Linling, LIU Sujun, NONG Tengchuan, TAN Jiyong. Effects of chronic unpredictable mild stress induced plasma exosomal miR-184-3p on proliferation and migration of vascular endothelial cells [J]. Tianjin Medical Journal, 2022, 50(9): 927-931. |
[11] | WANG Yong, NIU Weihua, LU Chengzhi, XU Mengping, XU Jianqiang, HE Qiang, XU Xuesheng. Effects of renal denervation on the vascular endothelial cell autophagy and NLRP3 activation in type 2 diabetic rats [J]. Tianjin Medical Journal, 2022, 50(8): 810-816. |
[12] | XU Jing-han, ZUO Jun-rong, HAN Chu-yi, LI Ting-ting, JIN Dong-xia, ZHAO Fu-mei, CONG Hong-liang. The protective effect of PCSK9 inhibitor on HUVECs injury induced by ox-LDL [J]. Tianjin Medical Journal, 2021, 49(7): 683-688. |
[13] | ZHANG Wang, WAN Yi-peng, ZHU Xuan. Research progress of Notch signaling pathway in liver fibrosis [J]. Tianjin Medical Journal, 2021, 49(7): 773-777. |
[14] | YAOFeng, ZHULei, CHENGBo, YANGMing, LIUMin△. The mechanism of PD-L1 overexpression in DENV-2 induced vascular endothelial cell autophagy and apoptosis [J]. Tianjin Medical Journal, 2021, 49(3): 231-236. |
[15] | WANG Ji-wei 1, 2,WANG Yi 1,WANG Dong1,ZHOU Yuan1,CHEN Fang-lian2,CUI Wei-yun2,LIU Li 2,ZHANG Jian-ning1, 2△. Study on the dynamic changes of endothelial progenitor cells in peripheral blood and cognitive ability of rats with different degrees of traumatic brain injury [J]. Tianjin Med J, 2018, 46(2): 139-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||