天津医药 ›› 2022, Vol. 50 ›› Issue (10): 1115-1120.doi: 10.11958/20220639
• 综述 • 上一篇
收稿日期:
2022-04-26
修回日期:
2022-06-21
出版日期:
2022-10-15
发布日期:
2022-10-20
通讯作者:
曾俊伟
E-mail:qiwansc@outlook.com;junweizeng@sohu.com
作者简介:
万琪(1997),男,硕士在读,主要从事疼痛的神经化学机制方面研究。E-mail: 基金资助:
WAN Qi(), XIE Ye, WANG Rong, LUO Yan, ZENG Junwei(
)
Received:
2022-04-26
Revised:
2022-06-21
Published:
2022-10-15
Online:
2022-10-20
Contact:
ZENG Junwei
E-mail:qiwansc@outlook.com;junweizeng@sohu.com
万琪, 谢晔, 王蓉, 骆延, 曾俊伟. Gal-3参与阿尔茨海默病的机制研究进展[J]. 天津医药, 2022, 50(10): 1115-1120.
WAN Qi, XIE Ye, WANG Rong, LUO Yan, ZENG Junwei. Research progress on the role of Gal-3 in Alzheimer’s disease[J]. Tianjin Medical Journal, 2022, 50(10): 1115-1120.
摘要:
半乳糖凝集素-3(Gal-3)属半乳糖苷凝集素家族,表达于神经系统,可结合多种分子,通过调节下游信号发挥作用。在阿尔茨海默病(AD)患者的病变脑区、血清和脑脊液中,Gal-3的表达变化与AD病变进程相关。因此,Gal-3有望成为AD诊断与检测药物疗效的重要生物标志物。该文就Gal-3参与AD的分子机制研究进展进行综述,以期为AD的诊断、治疗及药物研发提供新观点。
中图分类号:
[1] | GAO Z, LIU Z, WANG R, et al. Galectin-3 is a potential mediator for atherosclerosis[J]. J Immunol Res, 2020, 2020:5284728. doi: 10.1155/2020/5284728. |
[2] | BLANDA V, BRACALE U M, DI TARANTO M D, et al. Galectin-3 in cardiovascular diseases[J]. Int J Mol Sci, 2020, 21(23):9232. doi: 10.3390/ijms21239232. |
[3] | TAN Y, ZHENG Y, XU D, et al. Galectin-3:A key player in microglia-mediated neuroinflammation and Alzheimer's disease[J]. Cell Biosci, 2021, 11(1):78. doi: 10.1186/s13578-021-00592-7. |
[4] | 李志刚, 林文弢. 半乳糖凝集素3:治疗代谢综合征及相关疾病的新靶点[J]. 生命的化学, 2017, 37(6):907-912. |
LI Z G, LIN W T. Galectin-3:A new target for the treatment of metabolic syndrome-related diseases[J]. Chem Life, 2017, 37(6):907-912. doi: 10.13488/j.smhx.20170605. | |
[5] | SUTHAHAR N, MEIJERS W C, SILLJÉ H, et al. Galectin-3 activation and inhibition in heart failure and cardiovascular disease:An update[J]. Theranostics, 2018, 8(3):593-609. doi: 10.7150/thno.22196. |
[6] | NANGIA-MAKKER P, HOGAN V, RAZ A. Galectin-3 and cancer stemness[J]. Glycobiology, 2018, 28(4):172-181. doi: 10.1093/glycob/cwy001. |
[7] | THOMAS L, PASQUINI L A. Galectin-3-mediated glial crosstalk drives oligodendrocyte differentiation and(Re)myelination[J]. Front Cell Neurosci, 2018, 12:297. doi: 10.3389/fncel.2018.00297. |
[8] | IMAI S, KOYANAGI M, AZIMI Z, et al. Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms[J]. Sci Rep, 2017, 7(1):5947. doi: 10.1038/s41598-017-05784-1. |
[9] | TAKAKU S, YANAGISAWA H, WATABE K, et al. GDNF promotes neurite outgrowth and upregulates galectin-1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons[J]. Neurochem Int, 2013, 62(3):330-339. doi: 10.1016/j.neuint.2013.01.008. |
[10] | ESPOSITO N J, MAZZONI F, VARGAS J A, et al. Diurnal photoreceptor outer segment renewal in mice is independent of Galectin-3[J]. Invest Ophthalmol Vis Sci, 2021, 62(2):7. doi: 10.1167/iovs.62.2.7. |
[11] | MENDONÇA H R, CARVALHO J, ABREU C A, et al. Lack of Galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice[J]. Brain Res, 2018, 1700:126-137. doi: 10.1016/j.brainres.2018.07.018. |
[12] | YOO H I, KIM E G, LEE E J, et al. Neuroanatomical distribution of galectin-3 in the adult rat brain[J]. J Mol Histol, 2017, 48(2):133-146. doi: 10.1007/s10735-017-9712-9. |
[13] | REN Z, LIANG W, SHENG J, et al. Gal-3 is a potential biomarker for spinal cord injury and Gal-3 deficiency attenuates neuroinflammation through ROS/TXNIP/NLRP3 signaling pathway[J]. Biosci Rep, 2019, 39(12):BSR20192368. doi: 10.1042/BSR20192368. |
[14] | NOMURA K, VILALTA A, ALLENDORF D H, et al. Activated microglia desialylate and phagocytose cells via neuraminidase,Galectin-3,and mer tyrosine kinase[J]. J Immunol, 2017, 198(12):4792-4801. doi: 10.4049/jimmunol.1502532. |
[15] | SALEH A, MARHUENDA E, FABRE C, et al. A novel 3D nanofibre scaffold conserves the plasticity of glioblastoma stem cell invasion by regulating galectin-3 and integrin-β1 expression[J]. Sci Rep, 2019, 9(1):14612. doi: 10.1038/s41598-019-51108-w. |
[16] | WANG H, SONG X, HUANG Q, et al. LGALS3 promotes treatment resistance in glioblastoma and is associated with tumor risk and prognosis[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(4):760-769. doi: 10.1158/1055-9965.EPI-18-0638. |
[17] | SREJOVIC I, SELAKOVIC D, JOVICIC N, et al. Galectin-3:Roles in neurodevelopment,neuroinflammation,and behavior[J]. Biomolecules, 2020, 10(5):798. doi: 10.3390/biom10050798. |
[18] | SILVERMAN A M, NAKATA R, SHIMADA H, et al. A galectin-3-dependent pathway upregulates interleukin-6 in the microenvironment of human neuroblastoma[J]. Cancer Res, 2012, 72(9):2228-2238. doi: 10.1158/0008-5472.CAN-11-2165. |
[19] | XU G R, ZHANG C, YANG H X, et al. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway[J]. Biomed Pharmacother, 2020, 126:110071. doi: 10.1016/j.biopha.2020.110071. |
[20] | BOZA-SERRANO A, RUIZ R, SANCHEZ-VARO R, et al. Galectin-3,a novel endogenous TREM2 ligand,detrimentally regulates inflammatory response in alzheimer's disease[J]. Acta Neuropathol, 2019, 138(2):251-273. doi: 10.1007/s00401-019-02013-z. |
[21] | MARGADANT C, VAN DEN BOUT I, VAN BOXTEL A L, et al. Epigenetic regulation of galectin-3 expression by β1 integrins promotes cell adhesion and migration[J]. J Biol Chem, 2012, 287(53):44684-44693. doi: 10.1074/jbc.M112.426445. |
[22] | WESLEY U V, VEMUGANTI R, AYVACI E R, et al. Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling[J]. Brain Res, 2013, 1496:1-9. doi: 10.1016/j.brainres.2012.12.008. |
[23] | DOS SANTOS S N, SHELDON H, PEREIRA J X, et al. Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation[J]. Oncotarget, 2017, 8(30):49484-49501. doi: 10.18632/oncotarget.17718. |
[24] | LI P, LIU S, LU M, et al. Hematopoietic-derived Galectin-3 causes cellular and systemic insulin resistance[J]. Cell, 2016, 167(4):973-984.e12. doi: 10.1016/j.cell.2016.10.025. |
[25] | AL-DALAHMAH O, CAMPOS SOARES L, NICHOLSON J, et al. Galectin-3 modulates postnatal subventricular zone gliogenesis[J]. Glia, 2020, 68(2):435-450. doi: 10.1002/glia.23730. |
[26] | ZHANG L, WANG P, QIN Y, et al. RN1,a novel galectin-3 inhibitor,inhibits pancreatic cancer cell growth in vitro and in vivo via blocking galectin-3 associated signaling pathways[J]. Oncogene, 2017, 36(9):1297-1308. doi: 10.1038/onc.2016.306. |
[27] | NAKAJIMA K, KHO D H, YANAGAWA T, et al. Galectin-3 cleavage alters bone remodeling:different outcomes in breast and prostate cancer skeletal metastasis[J]. Cancer Res, 2016, 76(6):1391-1402. doi: 10.1158/0008-5472.CAN-15-1793. |
[28] | HU K, GU Y, LOU L, et al. Galectin-3 mediates bone marrow microenvironment-induced drug resistance in acute leukemia cells via Wnt/β-catenin signaling pathway[J]. J Hematol Oncol, 2015, 8:1. doi: 10.1186/s13045-014-0099-8. |
[29] | HAFSIA N, FORIEN M, RENAUDIN F, et al. Galectin 3 deficiency alters chondrocyte primary cilium formation and exacerbates cartilage destruction via mitochondrial apoptosis[J]. Int J Mol Sci, 2020, 21(4):1486. doi: 10.3390/ijms21041486. |
[30] | HARAZONO Y, NAKAJIMA K, RAZ A. Why anti-Bcl-2 clinical trials fail:A solution[J]. Cancer Metastasis Rev, 2014, 33(1):285-294. doi: 10.1007/s10555-013-9450-8. |
[31] | AL-SALAM S, JAGADEESH G S, SUDHADEVI M, et al. Galectin-3 possesses anti-necroptotic and anti-apoptotic effects in cisplatin-induced acute tubular necrosis[J]. Cell Physiol Biochem, 2021, 55(3):344-363. doi: 10.33594/000000381. |
[32] | SLACK R J, MILLS R, MACKINNON A C. The therapeutic potential of galectin-3 inhibition in fibrotic disease[J]. Int J Biochem Cell Biol, 2021, 130:105881. doi: 10.1016/j.biocel.2020.105881. |
[33] | TROMPET S, JUKEMA W, MOOIJAART S P, et al. Genetic variation in galectin-3 gene associates with cognitive function at old age[J]. Neurobiol Aging, 2012, 33(9):2232.e1-2232.e9. doi: 10.1016/j.neurobiolaging.2012.05.001. |
[34] | YAZAR T, OLGUN YAZAR H, CIHAN M. Evaluation of serum galectin-3 levels at Alzheimer patients by stages: A preliminary report[J]. Acta Neurol Belg, 2021, 121(4):949-954. doi: 10.1007/s13760-020-01477-1. |
[35] | WANG X, ZHANG S, LIN F, et al. Elevated galectin-3 levels in the serum of patients with alzheimer's disease[J]. Am J Alzheimers Dis Other Demen, 2015, 30(8):729-732. doi: 10.1177/1533317513495107. |
[36] | ASHRAF G M, BAEESA S S. Investigation of Gal-3 expression pattern in serum and cerebrospinal fluid of patients suffering from neurodegenerative disorders[J]. Front Neurosci, 2018, 12:430. doi: 10.3389/fnins.2018.00430. |
[37] | TAO C C, CHENG K M, MA Y L, et al. Galectin-3 promotes Aβ oligomerization and Aβ toxicity in a mouse model of Alzheimer's disease[J]. Cell Death Differ, 2020, 27(1):192-209. doi: 10.1038/s41418-019-0348-z. |
[38] | RAMíREZ E, SáNCHEZ-MALDONADO C, MAYORAL M A, et al. Neuroinflammation induced by the peptide amyloid-β(25-35)increase the presence of galectin-3 in astrocytes and microglia and impairs spatial memory[J]. Neuropeptides, 2019, 74:11-23. doi: 10.1016/j.npep.2019.02.001. |
[39] | HALIM A, BRINKMALM G, RÜETSCHI U, et al. Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid[J]. Proc Natl Acad Sci U S A, 2011, 108(29):11848-11853. doi: 10.1073/pnas.1102664108. |
[40] | SEKI T, KANAGAWA M, KOBAYASHI K, et al. Galectin 3-binding protein suppresses amyloid-β production by modulating β-cleavage of amyloid precursor protein[J]. J Biol Chem, 2020, 295(11):3678-3691. doi: 10.1074/jbc.RA119.008703. |
[41] | HERRERA-RIVERO M, SANTARELLI F, BROSSERON F, et al. Dysregulation of TLR5 and TAM ligands in the Alzheimer's brain as contributors to disease progression[J]. Mol Neurobiol, 2019, 56(9):6539-6550. doi: 10.1007/s12035-019-1540-3. |
[42] | KIM J Y, KIM D H, KIM D S, et al. Galectin-3 secreted by human umbilical cord blood-derived mesenchymal stem cells reduces amyloid-beta42 neurotoxicity in vitro[J]. FEBS Lett, 2010, 584(16):3601-3608. doi: 10.1016/j.febslet.2010.07.028. |
[43] | DU H, WONG M Y, ZHANG T, et al. A multifaceted role of progranulin in regulating amyloid-beta dynamics and responses[J]. Life Sci Alliance, 2021, 4(7):e202000874. doi: 10.26508/lsa.202000874. |
[44] | SHAROAR M G, PALKO S, GE Y, et al. Accumulation of saposin in dystrophic neurites is linked to impaired lysosomal functions in Alzheimer's disease brains[J]. Mol Neurodegener, 2021, 16(1):45. doi: 10.1186/s13024-021-00464-1. |
[45] | OKU Y, MURAKAMI K, IRIE K, et al. Synthesized Aβ42 caused intracellular oxidative damage,leading to cell death,via lysosome rupture[J]. Cell Struct Funct, 2017, 42(1):71-79. doi: 10.1247/csf.17006. |
[46] | LI Y, XU M, DING X, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1[J]. Nat Cell Biol, 2016, 18(10):1065-1077. doi: 10.1038/ncb3407. |
[47] | SHEEDY F J, GREBE A, RAYNER K J, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation[J]. Nat Immunol, 2013, 14(8):812-820. doi: 10.1038/ni.2639. |
[48] | NISHIKAWA H, LIU L, NAKANO F, et al. Modified citrus pectin prevents blood-brain barrier disruption in mouse subarachnoid hemorrhage by inhibiting Galectin-3[J]. Stroke, 2018, 49(11):2743-2751. doi: 10.1161/STROKEAHA.118.021757. |
[49] | YIN Q, CHEN J, MA S, et al. Pharmacological inhibition of Galectin-3 ameliorates diabetes-associated cognitive impairment,oxidative stress and neuroinflammation in vivo and in vitro[J]. J Inflamm Res, 2020, 13:533-542. doi: 10.2147/JIR.S273858. |
[1] | 陈晶晶, 农章嵩, 谭良源, 杨培培, 梁英业, 唐宏亮, 王开龙. 小胶质细胞极化在神经病理性疼痛中作用研究进展[J]. 天津医药, 2024, 52(9): 1000-1003. |
[2] | 范慧慧, 任玉梅, 田新磊, 张凯, 李晓丽. 止咳平喘方对支气管哮喘小鼠气道炎症及TLR4/TRAF6/NF-κB通路的影响[J]. 天津医药, 2024, 52(9): 924-929. |
[3] | 贾维宁, 鲍亚玲, 雷慧, 殷晓宁. 夏枯草提取物对脓毒症小鼠炎症反应和腹腔巨噬细胞的影响[J]. 天津医药, 2024, 52(9): 930-935. |
[4] | 刘斌, 杨龙, 李文莉, 邵宁宁, 董津睿. 小胶质细胞铁死亡在烟雾吸入性脑损伤中的作用机制探讨[J]. 天津医药, 2024, 52(8): 791-797. |
[5] | 吴波, 朱卓农, 郑丽娟, 陈俊如. 苦参碱对特应性皮炎炎症、氧化应激和伤口愈合的影响[J]. 天津医药, 2024, 52(6): 566-571. |
[6] | 袁满, 冯子瀚, 谢敏, 王柏军. 大黄素对骨关节炎模型小鼠痛觉行为的调节机制[J]. 天津医药, 2024, 52(6): 572-577. |
[7] | 蒋韬, 程红艳, 吴琼. 棕矢车菊素调节SDF-1α/CXCR4信号通路对妊娠糖尿病大鼠炎症反应的影响[J]. 天津医药, 2024, 52(6): 594-598. |
[8] | 霍晶辰, 王悦, 李华, 邱嵘, 苏景伟, 王卓凡, 杨洁. 系统免疫炎症指数对根治性放疗Ⅲ期肺鳞癌患者长期生存的预测价值[J]. 天津医药, 2024, 52(6): 634-638. |
[9] | 慕静然, 骆延, 梁璇, 徐陶, 曾俊伟, 刘晓红. 补体系统激活参与阿尔茨海默病的研究进展[J]. 天津医药, 2024, 52(6): 663-668. |
[10] | 韩正怡, 李锐, 陈齐, 王家友, 盛奎, 宋洁, 张野. 收肌管阻滞联合全麻对老年全膝关节置换术患者术后疼痛和认知功能的影响[J]. 天津医药, 2024, 52(5): 523-527. |
[11] | 吕梦娜, 李建斌, 吴锐. 自身炎症性疾病患者合并COVID-19严重程度的早期预测指标探讨[J]. 天津医药, 2024, 52(5): 528-531. |
[12] | 贾西瑞, 刘莉洁. 小胶质细胞在脓毒症相关性脑病中的作用及研究进展[J]. 天津医药, 2024, 52(5): 557-560. |
[13] | 何亚男, 蔡翔, 邱百怡, 孙邦梅, 李伶华. 穿心莲内酯调节cGAS-STING信号通路对银屑病小鼠的治疗作用[J]. 天津医药, 2024, 52(4): 379-386. |
[14] | 吴倩, 王意, 陈念, 周凯, 田昕, 徐晖, 苟小霞. 诱导化疗对鼻咽癌患者免疫功能及炎症指标的影响[J]. 天津医药, 2024, 52(4): 397-402. |
[15] | 肖雨倩, 孙可心, 万俊, 陈淑颖, 陈丽敏, 王岩, 白艳杰. RNA m6A甲基化在卒中后认知障碍中的研究进展[J]. 天津医药, 2024, 52(3): 331-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||