[1] Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation[J]. World J Stem Cells. 2014,6(3):305-311.doi: 10.4252/wjsc.v6.i3.305. [2] Zhang J, Jiang H, Shao J, et al. SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt-p53 axis[J]. BMC Neurol. 2014,14(1):207. [Epub ahead of print] [3] Mandalos N, Rhinn M, Granchi Z, et al. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development. [J]. Front Physiol. 2014, 12;5:345. doi: 10.3389/fphys.2014.00345. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate[J]. Cell Stem Cell. 2013, 12(1): 15-30.doi: 10.1016/j.stem.2012.12.007. [4] Kamachi Y, Kondoh H.Sox proteins: regulators of cell fate specification and differentiation[J].Development,2013,140(20):4129-4144.doi: 10.1242/dev.091793. [5] Castillo SD, Sanchez-Cespedes M. The SOX family of genes in cancer development: bio?logical relevance and opportunities for thera?py[J]. Expert Opin Ther Targets. 2012, 16: 903-919. [6] de la Rocha AM, Sampron N, Alonso MM, et al. Role of SOX family of transcription factors in central nervous system tumors [J]. Am J Cancer Res. 2014 ,4(4):312-324. eCollection 2014. [7] Lee KE, Seo J, Shin J, et al. Positive feedback loop between Sox2 and Sox6 inhibits neuronal differentiation in the developing central nervous system [J]. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2794-2799. doi: 10.1073/pnas.1308758111. [8] Liu YR, Laghari ZA, Novoa CA, et al. Sox2 acts as a transcriptional repressor in neural stem cells[J].BMC Neurosci. 2014,8,15:95.doi: 10.1186/1471-2202-15-95. [9] Arnold K, Sarkar A, Yram MA, et al. Sox2(+) adult stem and progeni?tor cells are important for tissue regeneration and survival of mice[J]. Cell Stem Cell. 2011, 9: 317-329. [10] Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumors of the central nervous system[J]. Acta Neuropathol. 2007, 114: 97-109. [11] Crocetti E, Trama A, Stiller C, et al. Epide?miology of glial and non-glial brain tumors in Europe[J]. Eur J Cancer. 2012, 48: 1532-1542. [12] Tanaka S, Louis DN, Curry WT, et al. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end[J]? Nat Rev Clin Oncol. 2013, 10: 14-26. [13] Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic land?scape of glioblastoma[J]. Cell. 2013, 155: 462-477. [14] Verhaak RG, Hoadley KA, Purdom E, et al. Integrated ge?nomic analysis identifies clinically relevant subtypes of glioblastoma characterized by ab-normalities in PDGFRA, IDH1, EGFR, and NF1[J]. Cancer Cell. 2010, 17: 98-110. [15] Dunn GP, Rinne ML, Wykosky J, et al. Emerging insights into the molecular and cellular basis of glioblastoma[J]. Genes Dev. 2012, 26: 756-784. [16] Annovazzi L, Mellai M, Caldera V, et al. SOX2 expression and amplification in gliomas and glioma cell lines[J]. Cancer Ge?nomics Proteomics. 2011, 8: 139-147. [17] Schwede M, Spentzos D, Bentink S,et al. Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis[J]. PLoS One. 2013,8(3):e57799. doi: 10.1371/journal.pone.0057799. [18] Holmberg J, He X, Peredo I, et al. Activation of neu?ral and pluripotent stem cell signatures corre?lates with increased malignancy in human glio?ma. PLoS One. 2011, 6: e18454. [19] Gangemi RM, Griffero F, Marubbi D, et al. SOX2 silencing in glioblasto?ma tumor-initiating cells causes stop of prolif?eration and loss of tumorigenicity[J]. Stem Cells. 2009, 27: 40-48. [20] Ikushima H, Todo T, Ino Y, et al. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein [J]. J Biol Chem. 2011,286(48):41434-41441. doi: 10.1074/jbc.M111.300863. [21] Suvà ML, Rheinbay E, Gillespie SM, et al. Reconstruct?ing and Reprogramming the Tumor-Propagat?ing Potential of Glioblastoma Stem-like Cells[J]. Cell. 2014, 157: 580-594. [22] Lalli G. Extracellular signals controlling neuroblast migration in the postnatal brain[J].Adv Exp Med Biol. 2014,800:149-180.doi: 10.1007/978-94-007-7687-6_9. [23] Oppel F, Müller N, Schackert G, et al. SOX2-RNAi at?tenuates S-phase entry and induces RhoA-de?pendent switch to protease-independent amoeboid migration in human glioma cells[J]. Mol Cancer. 2011, 10: 137. [24] Chen T, Dent SY. Chromatin modifiers and remodellers: regulators of cellular differentiation [J]. Nat Rev Genet. 2014 ,15(2):93-106. doi: 10.1038/nrg3607. [25] Alonso MM, Diez-Valle R, Manterola L, et al. Genetic and epigenetic modifications of Sox2 contribute to the inva?sive phenotype of malignant gliomas[J]. PLoS One. 2011, 6: e2674. doi: 10.1371/journal.pone.0026740. [26] Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells[J]. Nature. 2007, 448: 553-560. [27] Ikushima H, Todo T, Ino Y, et al. Autocrine TGF-beta sig?naling maintains tumorigenicity of glioma-initi?ating cells through Sry-related HMG-box factors[J]. Cell Stem Cell. 2009, 5: 504-514. [28] Appolloni I, Calzolari F, Tutucci E, et al. PDGF-B induc?es a homogeneous class of oligodendroglio?mas from embryonic neural progenitors[J]. Int J Cancer. 2009, 124: 2251-2259. [29] H?gerstrand D, He X, Bradic Lindh M, et al. Identifica?tion of a SOX2-dependent subset of tumor- and sphere-forming glioblastoma cells with a distinct tyrosine kinase inhibitor sensitivity pro?file[J]. Neuro Oncol. 2011, 13: 1178-1191. [30] Ge Y, Zhou F, Chen H, et al. Sox2 is trans?lationally activated by eukaryotic initiation fac?tor 4E in human glioma-initiating cells[J]. Bio?chem Biophys Res Commun. 2010, 397: 711-717. [31] Jeon HM, Sohn YW, Oh SY, et al. ID4 imparts chemoresistance and cancer stemness to glioma cells by dere?pressing miR-9*-mediated suppression of SOX2[J]. Cancer Res. 2011, 71: 3410-3421. [32] Yang YP, Chien Y, Chiou GY, et al. Inhibition of cancer stem cell-like properties and reduced chemo?radioresistance of glioblastoma using microR?NA145 with cationic polyurethane-short bra-nch PEI[J]. Biomaterials. 2012, 33: 1462-1476. [33] P?lajeva J, Swartling FJ, Jiang Y, et al. miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma[J]. BMC Cancer. 2012, 12: 378. [34] Bier A, Giladi N, Kronfeld N, et al. MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glio?ma stem cells by targeting RTVP-1[J]. Oncotarget. 2013, 4: 665-676. [35] Fang X, Yoon JG, Li L, et al. The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expres?sion microarray, and microRNA analysis[J]. BMC Genomics. 2011, 12: 11. [36] Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA de?livery suppresses tumorigenesis in a murine liver cancer model[J]. Cell. 2009, 137: 1005-1017. [37] Favaro R, Valotta M, Ferri AL, et al. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh[J]. Nat Neuro?sci. 2009, 12: 1248-1256. [38] Favaro R, Appolloni I, Pellegatta S, et al. Sox2 is required to maintain cancer stem cells in a mouse model of high-grade oligodendro?glioma[J]. Cancer Res. 2014, 74: 1833-1844. |