天津医药 ›› 2023, Vol. 51 ›› Issue (12): 1307-1313.doi: 10.11958/20230026
收稿日期:
2023-01-06
修回日期:
2023-07-31
出版日期:
2023-12-15
发布日期:
2023-12-22
通讯作者:
△ E-mail:作者简介:
袁冰舒(1991),女,助教,主要从事糖尿病方面研究。E-mail:基金资助:
Received:
2023-01-06
Revised:
2023-07-31
Published:
2023-12-15
Online:
2023-12-22
Contact:
△ E-mail:袁冰舒, 李丽娟. 肠道菌群改变影响CG-IUGR大鼠糖代谢的初步研究[J]. 天津医药, 2023, 51(12): 1307-1313.
YUAN Bingshu, LI Lijuan. Preliminary study on the effect of intestinal flora changes on glucose metabolism in CG-IUGR rats[J]. Tianjin Medical Journal, 2023, 51(12): 1307-1313.
摘要:
目的 对生长追赶的宫内发育迟缓(CG-IUGR)大鼠进行正常大鼠肠道菌群干预,分析其肠道菌群改变与糖代谢功能降低的关系。方法 将SD大鼠分为Control组、CG-IUGR组和CG-IUGR+肠菌组,每组8只。采用低热量饮食法复制CG-IUGR大鼠模型,CG-IUGR+肠菌组大鼠在其3周龄时移植Control组大鼠的肠菌,每周移植1次,共6次。测量3组大鼠出生后至8周龄的体质量和身长,计算体质指数(BMI);检测3组大鼠糖代谢相关指标:空腹血糖(FBG)及空腹胰岛素(FINS)水平,葡萄糖耐量试验和胰岛素耐量试验,以及葡萄糖负荷后15 min的血清胰岛素(INS)水平;采用实时荧光定量聚合酶链式反应(qPCR)和Western blot法检测3组大鼠骨骼肌糖原合成酶(GYS)1和肝脏GYS2的mRNA和蛋白表达水平;检测骨骼肌和肝脏GYS酶活性。采用16S rDNA测序法检测3组大鼠肠道菌群的多样性和结构组成。结果 与Control组相比,CG-IUGR组大鼠在生长发育过程中身长、体质量和BMI均明显增加,血清FINS水平下降,血清FBG无明显变化,血糖水平在糖负荷和INS负荷后明显上调,且血清INS水平在糖负荷后的15 min显著上调;骨骼肌GYS1和肝脏GYS2的mRNA和蛋白表达水平均降低,其GYS酶活性亦下降(P<0.05);CG-IUGR+肠菌组大鼠的上述变化均较CG-IUGR组改善(P<0.05)。CG-IUGR组大鼠肠道菌群ACE、Chao1指数低于Control组(P<0.05);与CG-IUGR组相比较,CG-IUGR+肠菌组大鼠肠道双歧杆菌相对丰度增加(P<0.05)。结论 IUGR可通过下调骨骼肌和肝脏GYS的表达及活性降低CG-IUGR大鼠糖代谢功能,CG-IUGR大鼠糖代谢功能异常可能与肠道菌群改变有关。
中图分类号:
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
GYS1 | 上游:CCTTGACTGTATTGGCTGTG | 219 |
下游:ATTTCTTTATCGCTGGACG | ||
GYS2 | 上游:TAAAGCCATCCGTCGTTG | 101 |
下游:GGGCAGATATTACCAGCAT | ||
β-actin | 上游:CCTAGACTTCGAGCAAGAGA | 140 |
下游:GGAAGGAAGGCTGGAAGA |
表1 引物序列
Tab.1 Primer sequences
基因名称 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
GYS1 | 上游:CCTTGACTGTATTGGCTGTG | 219 |
下游:ATTTCTTTATCGCTGGACG | ||
GYS2 | 上游:TAAAGCCATCCGTCGTTG | 101 |
下游:GGGCAGATATTACCAGCAT | ||
β-actin | 上游:CCTAGACTTCGAGCAAGAGA | 140 |
下游:GGAAGGAAGGCTGGAAGA |
图1 3组大鼠0—8周龄的身长变化 n=8;*P<0.05,**P<0.01;a与Control组比较,b与CG-IUGR组比较,P<0.05;F组间=26.305**,F时间=2 079.122**,F交互=2.997**;F0周龄=3.691*,F1周龄=0.430,F2周龄=2.176,F3周龄=23.910**,F4周龄=5.475*,F5周龄=27.807**,F6周龄=3.250,F7周龄=8.579**,F8周龄=4.133*。
Fig.1 Changes of body length from birth to 8 weeks in three groups of rats
图2 3组大鼠0—8周龄的体质量变化 n=8;*P<0.05,**P<0.01;a与Control组比较,b与CG-IUGR组比较,P<0.05;F组间=76.452**,F时间=1 553.272**,F交互=12.319**; F0周龄=16.812**,F1周龄=4.763*,F2周龄=34.385**,F3周龄=109.168**,F4周龄=58.587**,F5周龄=72.251**,F6周龄=23.472**,F7周龄=49.411**,F8周龄=56.071**。
Fig.2 Changes of body weight from birth to 8 weeks in three groups of rats
图3 3组大鼠0—8周龄的BMI变化 n=8;*P<0.05,**P<0.01;a与Control组比较,b与CG-IUGR组比较,P<0.05;F组间=46.259**,F时间=1 019.633**,F交互=3.958**;F0周龄=0.009,F1周龄=9.016**,F2周龄=25.455**,F3周龄=109.996**,F4周龄=17.314**,F5周龄=27.020**,F6周龄=11.272**,F7周龄=19.062**,F8周龄=31.524*。
Fig.3 Changes of body mass index from birth to 8 weeks in three groups rats
组别 | FBG/(mmol/L) | FINS/(mIU/L) |
---|---|---|
Control组 | 5.22±0.52 | 55.45±5.76 |
CG-IUGR组 | 5.62±0.44 | 45.54±2.81a |
CG-IUGR+肠菌组 | 5.35±0.29 | 55.61±4.50b |
F | 1.367 | 9.755** |
表2 各组大鼠FBG及FINS水平比较
Tab.2 Comparison of FBG and FINS levels between three groups(n=6,$\bar{x}±s$)
组别 | FBG/(mmol/L) | FINS/(mIU/L) |
---|---|---|
Control组 | 5.22±0.52 | 55.45±5.76 |
CG-IUGR组 | 5.62±0.44 | 45.54±2.81a |
CG-IUGR+肠菌组 | 5.35±0.29 | 55.61±4.50b |
F | 1.367 | 9.755** |
图4 3组大鼠GTT血糖的变化 n=6;*P<0.05,**P<0.01;a与Control组比较,b与CG-IUGR组比较,P<0.05;F组间=36.832**,F时间=149.680**,F交互=2.394*;F0 min=1.936,F15 min=8.584**,F30 min=20.806**,F60 min=33.528**,F90 min=21.889**,F120 min=14.944**。
Fig.4 Changes of GTT blood glucose in 3 groups of rats
图5 3组大鼠ITT血糖的变化 n=6;**P<0.01;a与Control组比较,b与CG-IUGR组比较,P<0.05;F组间=22.601**,F时间=122.433**,F交互=1.397;F0 min=0.875,F15 min=20.678**,F30 min=24.965**,F60 min=17.808**,F90 min=17.796**,F120 min=14.800**。
Fig.5 Changes of ITT blood glucose in 3 groups of rats
组别 | GYS1 | GYS2 |
---|---|---|
Control组 | 1.00±0.00 | 1.00±0.00 |
CG-IUGR组 | 0.70±0.19a | 0.56±0.17a |
CG-IUGR+肠菌组 | 0.97±0.25b | 0.88±0.20b |
F | 4.822* | 13.126** |
表3 3组大鼠骨骼肌GYS1和肝脏GYS2 mRNA表达水平比较
Tab.3 Comparison of mRNA expression levels of GYS1 in skeletal muscle and GYS2 in liver between three groups(n=6,$\bar{x}±s$)
组别 | GYS1 | GYS2 |
---|---|---|
Control组 | 1.00±0.00 | 1.00±0.00 |
CG-IUGR组 | 0.70±0.19a | 0.56±0.17a |
CG-IUGR+肠菌组 | 0.97±0.25b | 0.88±0.20b |
F | 4.822* | 13.126** |
图6 3组大鼠骨骼肌GYS1和肝脏GYS2的蛋白表达水平 A:Control组;B:CG-IUGR组;C:CG-IUGR+肠菌组。
Fig.6 Protein expression of GYS1 in skeletal muscle and GYS2 in liver of rats in each group
组别 | GYS1 | GYS2 |
---|---|---|
Control组 | 1.04±0.15 | 0.83±0.13 |
CG-IUGR组 | 0.66±0.06a | 0.53±0.08a |
CG-IUGR+肠菌组 | 0.92±0.12b | 0.68±0.08b |
F | 16.105** | 13.605** |
表4 3组大鼠骨骼肌GYS1和肝脏GYS2蛋白表达水平比较
Tab.4 Comparison of skeletal muscle GYS1 and liver GYS2 protein expression between three groups (n=6,$\bar{x}±s$)
组别 | GYS1 | GYS2 |
---|---|---|
Control组 | 1.04±0.15 | 0.83±0.13 |
CG-IUGR组 | 0.66±0.06a | 0.53±0.08a |
CG-IUGR+肠菌组 | 0.92±0.12b | 0.68±0.08b |
F | 16.105** | 13.605** |
组别 | 骨骼肌 | 肝脏 |
---|---|---|
Control组 | 30.49±4.67 | 24.29±3.54 |
CG-IUGR组 | 15.98±2.22a | 11.37±4.05a |
CG-IUGR+肠菌组 | 22.47±2.23ab | 17.92±2.82ab |
F | 30.005** | 20.337** |
表5 3组大鼠骨骼肌和肝脏GYS酶活性比较
Tab.5 Comparison of skeletal muscle and liver GYS enzyme activity between three groups
组别 | 骨骼肌 | 肝脏 |
---|---|---|
Control组 | 30.49±4.67 | 24.29±3.54 |
CG-IUGR组 | 15.98±2.22a | 11.37±4.05a |
CG-IUGR+肠菌组 | 22.47±2.23ab | 17.92±2.82ab |
F | 30.005** | 20.337** |
组别 | OTU | ACE指数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
Control组 | 834.60±119.19 | 1 295.55±184.59 | 1 177.70±138.77 | 3.85±0.43 | 0.07±0.02 |
CG-IUGR组 | 740.40±64.72 | 1 052.62±116.26a | 1 003.46±104.74a | 3.80±0.34 | 0.08±0.02 |
CG-IUGR+肠菌组 | 844.40±71.11 | 1 324.59±189.60b | 1 182.60±88.66b | 3.86±0.30 | 0.08±0.05 |
F | 2.109 | 4.005* | 4.101* | 0.046 | 0.176 |
表6 各组大鼠肠道菌群的多样性分析
Tab.6 Diversity analysis of intestinal flora in each group (n=5,$\bar{x}±s$)
组别 | OTU | ACE指数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
Control组 | 834.60±119.19 | 1 295.55±184.59 | 1 177.70±138.77 | 3.85±0.43 | 0.07±0.02 |
CG-IUGR组 | 740.40±64.72 | 1 052.62±116.26a | 1 003.46±104.74a | 3.80±0.34 | 0.08±0.02 |
CG-IUGR+肠菌组 | 844.40±71.11 | 1 324.59±189.60b | 1 182.60±88.66b | 3.86±0.30 | 0.08±0.05 |
F | 2.109 | 4.005* | 4.101* | 0.046 | 0.176 |
[1] | DUAN C, LIU M, XU H, et al. Decreased expression of GLUT4 in male CG-IUGR rats may play a vital role in their increased susceptibility to diabetes mellitus in adulthood[J]. Acta Biochim Biophys Sin(Shanghai), 2016, 48(10):872-882. doi:10.1093/abbs/gmw088. |
[2] | 高琳琳, 王军, 郭妍妍, 等. 叶酸对IUGR大鼠胎盘VEGF及其受体1表达的影响[J]. 天津医药, 2022, 50(1):73-77. |
GAO L L, WANG J, GUO Y Y, et al. Effects of folic acid on expression of VEGF and receptor 1 in placenta of IUGR rats[J]. Tianjin Med J, 2022, 50(1):73-77. doi:10.11958/20211385. | |
[3] | 袁冰舒, 赵海龙, 李丽娟. 肠道细菌与肥胖及2型糖尿病关系的研究进展[J]. 天津医药, 2019, 47(10):1102-1107. |
YUAN B S, ZHAO H L, LI L J. Research progress on relationship between intestinal flora and obesity and type 2 diabetes[J]. Tianjin Med J, 2019, 47(10):1102-1107. doi:10.11958/20191036. | |
[4] | GRECH A, COLLINS C E, HOLMES A, et al. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis[J]. Gut Microbes, 2021, 13(1):1-30. doi: 10.1080/19490976.2021.1897210. |
[5] | NULI R, AZHATI J, CAI J, et al. Metagenomics and faecal metabolomics integrative analysis towards the impaired glucose regulation and type 2 diabetes in uyghur-related omics[J]. J Diabetes Res, 2019, 2019:2893041. doi:10.1155/2019/2893041. |
[6] | CAO Y, YAO G, SHENG Y, et al. JinQi Jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice[J]. J Diabetes Res, 2019, 2019:1872134. doi:10.1155/2019/1872134. |
[7] | LONG W, ZHOU T, XUAN X, et al. IUGR with catch-up growth programs impaired insulin sensitivity through LRP6/IRS-1 in male rats[J]. Endocr Connect, 2022, 11(1):e210203. doi:10.1530/EC-21-0203. |
[8] | 郑锐丹, 汪无尽, 应艳琴, 等. 生长追赶宫内发育迟缓大鼠早期糖脂代谢及脂肪细胞功能的改变[J]. 中国当代儿科杂志, 2012, 14(7):543-547. |
ZHENG R D, WANG W J, YING Y Q, et al. Effects of intrauterine growth retardation with catch-up growth on sugar-lipid metabolism and adipocyte function in young rats[J]. Chinese Journal of Contemporary Pediatrics, 2012, 14(7):543-547. | |
[9] | WU Y, YIN G, WANG P, et al. Effects of different diet-induced postnatal catch-up growth on glycolipid metabolism in intrauterine growth retardation male rats[J]. Exp Ther Med, 2020, 20(6):134. doi:10.3892/etm.2020.9263. |
[10] | WANG B, CHENG J, WAN H, et al. Early-life exposure to the Chinese famine,genetic susceptibility and the risk of type 2 diabetes in adulthood[J]. Diabetologia, 2021, 64(8):1766-1774. doi:10.1007/s00125-021-05455-x. |
[11] | CHEN D, WANG Y Y, LI S P, et al. Maternal propionate supplementation ameliorates glucose and lipid metabolic disturbance in hypoxia-induced fetal growth restriction[J]. Food Funct, 2022, 13(20):10724-10736. doi:10.1039/d2fo01481e. |
[12] | REN C, ZHANG Y, CUI W, et al. A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signaling in rats with type 2 diabetes induced by high fat-diet and streptozotocin[J]. Int J Biol Macromol, 2015, 72:951-959. doi:10.1016/j.ijbiomac.2014.09.060. |
[13] | OYENIHI A B, LANGA S, MUKARATIRWA S, et al. Effects of centella asiatica on skeletal muscle structure and key enzymes of glucose and glycogen metabolism in type 2 diabetic rats[J]. Biomed Pharmacother, 2019, 112:108715. doi:10.1016/j.biopha.2019.108715. |
[14] | LUO D, MU T, SUN H. Sweet potato(Ipomoea batatas L.)leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice[J]. Food Funct, 2021, 12(9):4117-4131. doi:10.1039/d0fo02733b. |
[15] | XIROUCHAKI C E, MANGIAFICO S P, BATE K, et al. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice[J]. Mol Metab, 2016, 5(3):221-232. doi:10.1016/j.molmet.2016.01.004. |
[16] | DENG N, ZHENG B, LI T, et al. Assessment of the phenolic profiles,hypoglycemic activity,and molecular mechanism of different highland barley(Hordeum vulgare L.)varieties[J]. Int J Mol Sci, 2020, 21(4):1175. doi:10.3390/ijms21041175. |
[17] | FASSATOUI M, LOPEZ-SILES M, DÍAZ-RIZZOLO D A, et al. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus[J]. Biosci Rep, 2019, 39(6):BSR20182348. doi:10.1042/BSR20182348. |
[18] | ZHANG L, QIN Q, LIU M, et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity,oxidative stress and inflammation,and normalize intestine microbiota in streptozotocin-induced diabetic rats[J]. Pathog Dis, 2018, 76(4): fty028. doi:10.1093/femspd/fty028. |
[19] | XIE X, LIAO J, AI Y, et al. Pi-Dan-Jian-Qing Decoction ameliorates type 2 diabetes mellitus through regulating the gut microbiota and serum metabolism[J]. Front Cell Infect Microbiol, 2021, 11:748872. doi:10.3389/fcimb.2021.748872. |
[20] | YU F, HAN W, ZHAN G, et al. Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice[J]. Aging (Albany NY), 2019, 11(22):10454-10467. doi:10.18632/aging.102469. |
[21] | ZHANG P P, LI L L, HAN X, et al. Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice[J]. Acta Pharmacol Sin, 2020, 41(5):678-685. doi:10.1038/s41401-019-0330-9. |
[22] | WANG Y, YANG Z, TANG H, et al. Faecal microbiota transplantation is better than probiotics for tissue regeneration of type 2 diabetes mellitus injuries in mice[J]. Arch Physiol Biochem, 2022:1-9. doi:10.1080/13813455.2022.2080229. |
[23] | LI Y, DAI C, YUAN Y, et al. The mechanisms of lncRNA Tug1 in islet dysfunction in a mouse model of intrauterine growth retardation[J]. Cell Biochem Funct, 2020, 38(8):1129-1138. doi:10.1002/cbf.3575. |
[24] | 相萌, 王春阳, 张力, 等. 黄芩苷对宫内生长迟缓胎鼠胰岛素抵抗及PI3K/AKT通路的影响[J]. 中国新药与临床杂志, 2021, 40(10):718-723. |
XIANG M, WANG C Y, ZHANG L, et al. Effects of baicalin on insulin resistance and PI3K/AKT pathway in fetal rats with intrauterine growth retardation[J]. Chinese Journal of New Drugs and Clinical Remedies, 2021, 40(10):718-723. doi:10.14109/jxnki.xyylc.2021.10.10. |
[1] | 林峰, 陈铃雄, 刘羽, 张旭明, 尹志达, 林坛辉, 刘尊荣. 紫杉醇涂层球囊治疗2型糖尿病膝下动脉严重病变患者发生远期再狭窄预测模型的构建[J]. 天津医药, 2024, 52(8): 830-834. |
[2] | 马良, 胡立影, 石羽, 龙刚. 光学相干断层扫描血管成像技术在慢性肾脏病临床评估中的应用进展[J]. 天津医药, 2024, 52(8): 882-887. |
[3] | 侯维玲, 乔云阳, 吴小芸, 施会敏, 曲高婷, 张爱青. 锌指蛋白281抑制高糖诱导的肾小管上皮细胞上皮间质转化和细胞外基质合成[J]. 天津医药, 2024, 52(7): 720-726. |
[4] | 王娴, 刘霞明, 陈曼玉, 赵君, 王立东. 基于机器学习对2型糖尿病肾病预测模型的构建及验证[J]. 天津医药, 2024, 52(7): 775-780. |
[5] | 夏雨薇, 乔云阳, 刘雪薇, 施会敏, 曲高婷, 张爱青, 甘卫华. tRF-1:30对高糖诱导的肾小管上皮细胞炎性因子表达的影响[J]. 天津医药, 2024, 52(6): 561-566. |
[6] | 陈芋洁, 黄霞, 邓铂林, 贾文文. 金合欢素调节Hippo信号通路对糖尿病视网膜病变大鼠血管生成的影响[J]. 天津医药, 2024, 52(6): 578-583. |
[7] | 蒋韬, 程红艳, 吴琼. 棕矢车菊素调节SDF-1α/CXCR4信号通路对妊娠糖尿病大鼠炎症反应的影响[J]. 天津医药, 2024, 52(6): 594-598. |
[8] | 常鸿, 张科伟, 徐静, 崔晓敏, 杨菲菲. 血清HbA1c、Alarin及Ficolin-3水平对妊娠期糖尿病患者妊娠结局的预测价值[J]. 天津医药, 2024, 52(6): 625-629. |
[9] | 黄玉, 贺蕊莹, 刘森, 陈开元, 李美运, 程键晔, 武艳. 小球藻提取物促进糖尿病小鼠皮肤创面愈合的作用研究[J]. 天津医药, 2024, 52(4): 337-345. |
[10] | 解有成, 王菲, 徐进, 于晓辉. SIRT1在糖尿病心肌病发病中的研究进展[J]. 天津医药, 2024, 52(4): 443-448. |
[11] | 鲍亚玲, 雷慧, 马君, 赵新梅. 黄芪阳和汤调控PI3K/AKT/NF-κB信号通路促进糖尿病足溃疡大鼠创面愈合[J]. 天津医药, 2024, 52(3): 266-272. |
[12] | 付秀娟, 卢祖能. 糖尿病合并慢性炎性脱髓鞘性多发性神经根神经病研究进展[J]. 天津医药, 2024, 52(2): 220-224. |
[13] | 曹君阳, 马春星, 刘志娜. 维生素及叶酸水平对妊娠期糖尿病并发子痫前期的预测价值[J]. 天津医药, 2024, 52(12): 1278-1282. |
[14] | 谷巍, 张惠娜, 侯丽萍, 于敏, 程黎蓉. 脂质相关指数与糖尿病肾病相关性研究[J]. 天津医药, 2024, 52(12): 1308-1312. |
[15] | 涂静, 夏晨曦, 李婷. 2型糖尿病亚临床周围神经病变与TIR的相关性及危险因素探讨[J]. 天津医药, 2024, 52(11): 1188-1192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||