[1] |
HENEIN M Y, VANCHERI F. Defining coronary slow flow[J]. Angiology, 2021, 72(9):805-807. doi:10.1177/00033197211007702.
|
[2] |
JIANG H, GE Z, ZHANG L, et al. Long noncoding RNA AF131217.1 regulated coronary slow flow-induced inflammation affecting coronary slow flow via KLF4[J]. Braz J Cardiovasc Surg, 2022, 37(4):525-533. doi:10.21470/1678-9741-2020-0573.
|
[3] |
ZHAO C, ZONG Z, ZHU Q, et al. The lncRNA MALAT1 participates in regulating coronary slow flow endothelial dysfunction through the miR-181b-5p-MEF2A-ET-1 axis[J]. Vascul Pharmacol, 2021, 138:106841. doi:10.1016/j.vph.2021.106841.
|
[4] |
ÖZDE C, AKTÜRE G, AYTEKIN S, et al. Assessment of the relationship between coronary flow rates and myocardial perfusion abnormality in patients with nonobstructive coronary artery disease:An observational study in cardiac syndrome X and coronary slow flow[J]. Nucl Med Commun, 2019, 40(11):1122-1129. doi:10.1097/MNM.0000000000001080.
|
[5] |
ÇELIK O, DEMIRCI E, AYDIN M, et al. Evaluation of ghrelin levels and endothelial functions in patients with coronary slow flow phenomenon[J]. Interv Med Appl Sci, 2017, 9(3):154-159. doi:10.1556/1646.9.2017.27.
|
[6] |
HAGSTRÖM E, HELD C, STEWART R A, et al. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease[J]. Clin Chem, 2017, 63(1):325-333. doi:10.1373/clinchem.2016.260570.
|
[7] |
JOHANN K, KLEINERT M, KLAUS S. The role of GDF15 as a myomitokine[J]. Cells, 2021, 10(11):2990. doi:10.3390/cells10112990.
|
[8] |
郭宝亮, 李占鲁. 老年急性冠状动脉综合征患者生长分化因子15与冠状动脉病变程度和预后关系[J]. 中华老年医学杂志, 2019, 38(11):1229-1231.
|
|
GUO B L, LI Z L. Correlation of serum growth differentiation factor-15 level with degree of coronary artery lesion and prognosis in elderly patients with acute coronary syndrome[J]. Chin J Geriatr, 2019, 38(11):1229-1231. doi:10.3760/cma.j.issn.0254-9026.2019.11.009.
|
[9] |
ZAHLER D, ROZENFELD K L, STEIN M, et al. C-reactive protein velocity and the risk of acute kidney injury among ST elevation myocardial infarction patients undergoing primary percutaneous intervention[J]. J Nephrol, 2019, 32(3):437-443. doi:10.1007/s40620-019-00594-2.
|
[10] |
ZHANG W, SPEISER J L, YE F, et al. High-sensitivity C-reactive protein modifies the cardiovascular risk of lipoprotein(a):Multi-ethnic study of atherosclerosis[J]. J Am Coll Cardiol, 2021, 78(11):1083-1094. doi:10.1016/j.jacc.2021.07.016.
|
[11] |
WANG J, WEI L, YANG X, et al. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease[J]. J Am Heart Assoc, 2019, 8(17):e012826. doi:10.1161/JAHA.119.012826.
|
[12] |
ZHU Q, ZHAO C, WANG Y, et al. LncRNA NEAT1 promote inflammatory responses in coronary slow flow through regulating miR-148b-3p/ICAM-1 axis[J]. J Inflamm Res, 2021, 14:2445-2463. doi:10.2147/JIR.S312583.
|
[13] |
孙理华, 幸世峰, 张颖, 等. 冠状动脉慢血流疾病转录组学研究及差异基因验证[J]. 中华心血管病杂志, 2021, 49(12):1206-1212.
|
|
SUN L H, XING S F, ZHANG Y, et al. Transcriptomics study of coronary slow flow disease and verification of differentially expressed genes[J]. Chin J Cardiol, 2021, 49(12):1206-1212. doi:10.3760/cma.j.cn112148-20210604-00474.
|
[14] |
ROSHANRAVAN N, SHABESTARI A N, ALAMDARI N M, et al. A novel inflammatory signaling pathway in patients with slow coronary flow:NF-κB/IL-1β/nitric oxide[J]. Cytokine, 2021, 143:155511. doi:10.1016/j.cyto.2021.155511.
|
[15] |
LI M O, WAN Y Y, SANJABI S, et al. Transforming growth factor-beta regulation of immune responses[J]. Annu Rev Immunol, 2006, 24:99-146. doi:10.1146/annurev.immunol.24.021605.090737.
|
[16] |
PEKDEMIR H, CIN V G, CIÇEK D, et al. Slow coronary flow may be a sign of diffuse atherosclerosis. Contribution of FFR and IVUS[J]. Acta Cardiol, 2004, 59(2):127-133. doi:10.2143/AC.59.2.2005166.
|
[17] |
GOPAL D M, LARSON M G, JANUZZI J L, et al. Biomarkers of cardiovascular stress and subclinical atherosclerosis in the community[J]. Clin Chem, 2014, 60(11):1402-1408. doi:10.1373/clinchem.2014.227116.
|
[18] |
牟立欣, 于云霞, 王永槐, 等. 二维斑点追踪技术评价冠状动脉慢血流患者左心室整体收缩功能[J]. 中国医学影像技术, 2020, 36(S1):20-24.
|
|
MU L X, YU Y X, WANG Y H, et al. Evaluation of global left ventricular systolic function in patients with coronary slow flow by two-dimensional speckle tracking technique[J]. Chin Med Imaging Technol, 2020, 36(S1):20-24. doi:10.13929/j.issn.1003-3289.2020.z1.005.
|
[19] |
李莹超, 肖迎聪, 任耀龙, 等. 二维斑点追踪分层应变技术定量评价冠状动脉慢血流患者左心室收缩功能的价值[J]. 疑难病杂志, 2022, 21(4):356-360,365.
|
|
LI Y C, XIAO Y C, REN Y L, et al. Quantitative evaluation of left ventricular systolic function in patients with slow coronary blood flow by two-dimensional speckle tracking hierchical strain technique[J]. Chin J Diffic and Compl Cas, 2022, 21(4):356-360,365. doi:10.3969/j.issn.1671-6450.2022.04.005.
|
[20] |
YURTDAŞ M, YAYLALI Y T, KAYA Y, et al. Increased plasma high-sensitivity C-reactive protein and myeloperoxidase levels may predict ischemia during myocardial perfusion imaging in slow coronary flow[J]. Arch Med Res, 2014, 45(1):63-69. doi:10.1016/j.arcmed.2013.10.019.
|
[21] |
MILOSEVIC M, BALINT B, BOSKOVIC S, et al. Early selective C-reactive protein apheresis in a patient with acute ST segment elevation myocardial reinfarction[J]. Blood Purif, 2021, 50(3):399-401. doi:10.1159/000510554.
|
[22] |
CANPOLAT U, ÇETIN E H, CETIN S, et al. Association of monocyte-to-HDL cholesterol ratio with slow coronary flow is linked to systemic inflammation[J]. Clin Appl Thromb Hemost, 2016, 22(5):476-482. doi:10.1177/1076029615594002.
|
[23] |
AKYÜZ A, AYDIN F, ALPSOY Ş, et al. Relationship of serum salusin beta levels with coronary slow flow[J]. Anatol J Cardiol, 2019, 22(4):177-184. doi:10.14744/AnatolJCardiol.2019.43247.
|