[1] |
ROBLES-OSORIO M L, SABATH-SILVA E, SABATH E. Arsenic-mediated nephrotoxicity[J]. Ren Fail, 2015, 37(4):542-547. doi:10.3109/0886022X.2015.1013419.
|
[2] |
JALILI C, KAZEMI M, CHENG H, et al. Associations between exposure to heavy metals and the risk of chronic kidney disease: a systematic review and meta-analysis[J]. Crit Rev Toxicol, 2021, 51(2):165-182. doi:10.1080/10408444.2021.1891196.
|
[3] |
WANG G, ZHANG T, SUN W, et al. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma[J]. Free Radic Biol Med, 2017, 106:24-37. doi:10.1016/j.freeradbiomed.2017.02.015.
|
[4] |
SHAO Y Z, ZHAO H J, WANG Y, et al. The apoptosis in arsenic-induced oxidative stress is associated with autophagy in the testis tissues of chicken[J]. Poult Sci, 2018, 97(9):3248-3257. doi:10.3382/ps/pey156.
|
[5] |
WEI X M, JIANG S, LI S S, et al. Endoplasmic reticulum stress-activated PERK-eIF2α-ATF4 signaling pathway is involved in the ameliorative effects of Ginseng polysaccharides against cisplatin-induced nephrotoxicity in mice[J]. ACS Omega, 2021, 6(13):8958-8966. doi:10.1021/acsomega.0c06339.
|
[6] |
XIE W, ZHOU P, SUN Y, et al. Protective effects and target network analysis of Ginsenoside Rg1 in cerebral ischemia and reperfusion injury:a comprehensive overview of experimental studies[J]. Cells, 2018, 7(12):270. doi:10.3390/cells7120270.
|
[7] |
XU X, QU Z, QIAN H, et al. Ginsenoside Rg1 ameliorates reproductive function injury in C57BL/6J mice induced by di-N-butyl-phthalate[J]. Environ Toxicol, 2021, 36(5):789-799. doi:10.1002/tox.23081.
|
[8] |
NI X J, XU Z Q, JIN H, et al. Ginsenoside Rg1 protects human renal tubular epithelial cells from lipopolysaccharide-induced apoptosis and inflammation damage[J]. Braz J Med Biol Res, 2017, 51(2):e6611. doi:10.1590/1414-431X20176611.
|
[9] |
MAO N, TAN R Z, WANG S Q, et al. Ginsenoside Rg1 inhibits angiotensin Ⅱ-induced podocyte autophagy via AMPK/mTOR/PI3K pathway[J]. Cell Biol Int, 2016, 40(8):917-925. doi:10.1002/cbin.10634.
|
[10] |
TURK E, KANDEMIR F M, YILDIRIM S, et al. Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats[J]. Biol Trace Elem Res, 2019, 189(1):95-108. doi:10.1007/s12011-018-1443-6.
|
[11] |
YANG Y, SONG S, NIE Y, et al. Lentinan alleviates arsenic-induced hepatotoxicity in mice via downregulation of OX40/IL-17A and activation of Nrf2 signaling[J]. BMC Pharmacol Toxicol, 2022, 23(1):16. doi:10.1186/s40360-022-00557-7.
|
[12] |
QIN Q, LIN N, HUANG H, et al. Ginsenoside Rg1 ameliorates cardiac oxidative stress and inflammation in streptozotocin-induced diabetic rats[J]. Diabetes Metab Syndr Obes, 2019, 12:1091-1103. doi:10.2147/DMSO.S208989.
|
[13] |
GAO Y, LI J, CHU S, et al. Ginsenoside Rg1 protects mice against streptozotocin-induced type 1 diabetic by modulating the NLRP3 and Keap1/Nrf2/HO-1 pathways[J]. Eur J Pharmacol, 2020, 866:172801. doi:10.1016/j.ejphar.2019.172801.
|
[14] |
SONG M F, YANG Y, YI Z W, et al. Sema 3A as a biomarker of the activated mTOR pathway during hexavalent chromium-induced acute kidney injury[J]. Toxicol Lett, 2018, 299:226-235. doi:10.1016/j.toxlet.2018.09.005.
|
[15] |
GUO H, LI X, ZHANG Y, et al. Metabolic characteristics related to the hazardous effects of environmental arsenic on humans:a metabolomic review[J]. Ecotoxicol Environ Saf, 2022, 236:113459. doi:10.1016/j.ecoenv.2022.113459.
|
[16] |
MANCUSO C, SANTANGELO R. Panax ginseng and Panax quinquefolius:from pharmacology to toxicology[J]. Food Chem Toxicol, 2017, 107(Pt A):362-372. doi:10.1016/j.fct.2017.07.019.
|
[17] |
ZHANG G, ZHANG M, YU J, et al. Ginsenoside Rg1 prevents H2O2-induced lens opacity[J]. Curr Eye Res, 2021, 46(8):1159-1165. doi:10.1080/02713683.2020.1869266.
|
[18] |
SHEN X, DONG X, HAN Y, et al. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice[J]. Int Immunopharmacol, 2020, 82:106339. doi:10.1016/j.intimp.2020.106339.
|
[19] |
FAN Y, XIA J, JIA D, et al. Mechanism of ginsenoside Rg1 renal protection in a mouse model of d-galactose-induced subacute damage[J]. Pharm Biol, 2016, 54(9):1815-1821. doi:10.3109/13880209.2015.1129543.
|
[20] |
GUO J, WANG R, MIN F. Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells[J]. J Leukoc Biol, 2022, 112(5):1065-1077. doi:10.1002/JLB.1A0422-211R.
|
[21] |
HU J L, XIAO L, LI Z Y, et al. Upregulation of HO-1 is accompanied by activation of p38MAPK and mTOR in human oesophageal squamous carcinoma cells[J]. Cell Biol Int, 2013, 37(6):584-592. doi:10.1002/cbin.10075.
|
[22] |
JIN X, XU Z, CAO J, et al. HO-1/EBP interaction alleviates cholesterol-induced hypoxia through the activation of the AKT and Nrf2/mTOR pathways and inhibition of carbohydrate metabolism in cardiomyocytes[J]. Int J Mol Med, 2017, 39(6):1409-1420. doi:10.3892/ijmm.2017.2979.
|
[23] |
KIM J, KUNDU M, VIOLLET B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2):132-141. doi:10.1038/ncb2152.
|
[24] |
WANG Y, ZHANG H. Regulation of autophagy by mTOR signaling pathway[J]. Adv Exp Med Biol, 2019, 1206:67-83. doi:10.1007/978-981-15-0602-4_3.
|
[25] |
FENG F B, QIU H Y. Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis[J]. Biomed Pharmacother, 2018, 102:1209-1220. doi:10.1016/j.biopha.2018.03.142.
|