天津医药 ›› 2024, Vol. 52 ›› Issue (10): 1031-1037.doi: 10.11958/20240774
张桂贤1(), 刘大卫1, 李文畅1, 蔡隽1, 宗文辉1, 刘洪斌2, 赵秀梅1,△(
)
收稿日期:
2024-06-14
修回日期:
2024-08-27
出版日期:
2024-10-15
发布日期:
2024-10-14
通讯作者:
△ E-mail:作者简介:
张桂贤(1981),女,副研究员,主要从事急、慢性胰腺炎药理学方面研究。E-mail:基金资助:
ZHANG Guixian1(), LIU Dawei1, LI Wenchang1, CAI Jun1, ZONG Wenhui1, LIU Hongbin2, ZHAO Xiumei1,△(
)
Received:
2024-06-14
Revised:
2024-08-27
Published:
2024-10-15
Online:
2024-10-14
Contact:
△ E-mail:张桂贤, 刘大卫, 李文畅, 蔡隽, 宗文辉, 刘洪斌, 赵秀梅. BOC2抑制N-甲酰肽/甲酰肽受体信号通路减轻SAP炎症损伤的机制研究[J]. 天津医药, 2024, 52(10): 1031-1037.
ZHANG Guixian, LIU Dawei, LI Wenchang, CAI Jun, ZONG Wenhui, LIU Hongbin, ZHAO Xiumei. Mechanism study of BOC2 alleviating SAP inflammatory damage by inhibiting N-formyl peptide/formyl peptide receptor pathway[J]. Tianjin Medical Journal, 2024, 52(10): 1031-1037.
摘要:
目的 观察BOC-Phe-Leu-Phe-Leu-Phe(BOC2)对重症急性胰腺炎(SAP)大鼠血中6种线粒体N-甲酰肽(NFPs)及胰腺组织中2种甲酰肽受体(FPRs)表达的影响,探讨其减轻SAP炎症损伤的机制。方法 将40只雄性SD大鼠随机分为4组:假手术组,模型组,BOC2低、高剂量组(分别为0.1、0.2 mg/kg),每组10只。后3组以胆胰管逆行注射5%牛磺胆酸钠(50 mg/kg)制备SAP模型。造模结束后0.5 h腹腔注射相应剂量药物,4 h取材。苏木精-伊红染色观察胰腺病理改变;蛋白免疫印迹法检测血浆中NFPs的表达;免疫组化法检测胰腺FPRs表达;酶联免疫吸附试验检测血浆中白细胞介素(IL)-1β、IL-6和肿瘤坏死因子(TNF)-α水平;实时荧光定量聚合酶链反应检测胰腺局部组织炎性因子的表达。结果 与模型组比较,BOC2低、高剂量组胰腺出血、腺泡细胞坏死、炎性细胞浸润、水肿等病理现象均改善;胰腺病理评分,血浆线粒体NADH-泛素氧化还原酶链(MT-ND)1、MT-ND2、MT-ND3、MT-ND5、MT-ND6表达,胰腺FPRs表达,血浆及胰腺组织中3种炎性因子表达均下降(P<0.05)。结论 BOC2可通过拮抗线粒体NFPs/FPRs信号通路减少炎性因子产生,减轻SAP炎症损伤。
中图分类号:
基因 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
IL-1β | 上游:GCAGCTTTCGACAGTGAGGA | 98 |
下游:TCTGGACAGCCCAAGTCAAG | ||
IL-6 | 上游:CACTTCACAAGTCGGAGGCT | 114 |
下游:TCTGACAGTGCATCATCGCT | ||
TNF-α | 上游:CTCGAGTGACAAGCCCGTAG | 187 |
下游:GCAGCCTTGTCCCTTGAAGA | ||
GAPDH | 上游:GACATGCCGCCTGGAGAAAC | 92 |
下游:AGCCCAGGATGCCCTTTAGT |
表1 qPCR引物序列
Tab.1 Sequences of primers for qPCR
基因 | 引物序列(5′→3′) | 产物大小/bp |
---|---|---|
IL-1β | 上游:GCAGCTTTCGACAGTGAGGA | 98 |
下游:TCTGGACAGCCCAAGTCAAG | ||
IL-6 | 上游:CACTTCACAAGTCGGAGGCT | 114 |
下游:TCTGACAGTGCATCATCGCT | ||
TNF-α | 上游:CTCGAGTGACAAGCCCGTAG | 187 |
下游:GCAGCCTTGTCCCTTGAAGA | ||
GAPDH | 上游:GACATGCCGCCTGGAGAAAC | 92 |
下游:AGCCCAGGATGCCCTTTAGT |
组别 | 腹水量/mL | 胰腺干湿质量比/(g/g) |
---|---|---|
假手术组 | 0 | 0.51±0.09 |
模型组 | 7.89±0.53a | 0.22±0.05a |
BOC2低剂量组 | 5.39±0.59ab | 0.36±0.06ab |
BOC2高剂量组 | 3.80±0.46abc | 0.41±0.06ab |
F | 520.973** | 31.964** |
表2 各组大鼠腹水量和胰腺干湿质量比的比较(n=10,$\bar{x}±s$)
Tab.2 Comparison of ascites volume and pancreatic dry and wet ratio between four groups of rats
组别 | 腹水量/mL | 胰腺干湿质量比/(g/g) |
---|---|---|
假手术组 | 0 | 0.51±0.09 |
模型组 | 7.89±0.53a | 0.22±0.05a |
BOC2低剂量组 | 5.39±0.59ab | 0.36±0.06ab |
BOC2高剂量组 | 3.80±0.46abc | 0.41±0.06ab |
F | 520.973** | 31.964** |
组别 | 病理评分/分 | CD11b阳性细胞数/(个/视野) |
---|---|---|
假手术组 | 0 | 0 |
模型组 | 13.32±0.93a | 90.50±6.35a |
BOC2低剂量组 | 10.27±0.89ab | 47.60±2.95ab |
BOC2高剂量组 | 5.98±0.75abc | 22.40±2.72abc |
F | 601.452** | 1 068.648** |
表3 各组大鼠胰腺组织形态学变化的比较 (n=10,$\bar{x}±s$)
Tab.3 Comparison of morphological changes in pancreatic tissue of rats between four groups
组别 | 病理评分/分 | CD11b阳性细胞数/(个/视野) |
---|---|---|
假手术组 | 0 | 0 |
模型组 | 13.32±0.93a | 90.50±6.35a |
BOC2低剂量组 | 10.27±0.89ab | 47.60±2.95ab |
BOC2高剂量组 | 5.98±0.75abc | 22.40±2.72abc |
F | 601.452** | 1 068.648** |
图2 BOC2对大鼠血浆中6种线粒体NFPs蛋白表达的影响 A:假手术组;B:模型组;C:BOC2低剂量组;D:BOC2高剂量组。
Fig.2 The effect of BOC2 on the expression of six mitochondrial NFPs proteins in rat plasma
组别 | MT-ND1 | MT-ND2 | MT-ND3 | |||
---|---|---|---|---|---|---|
假手术组 | 0.06±0.01 | 0.13±0.01 | 0.08±0.01 | |||
模型组 | 0.72±0.02a | 0.64±0.02a | 0.38±0.02a | |||
BOC2低剂量组 | 0.34±0.02ab | 0.08±0.01ab | 0.22±0.04ab | |||
BOC2高剂量组 | 0.25±0.05abc | 0.09±0.01ab | 0.09±0.01bc | |||
F | 297.968** | 1 952.960** | 100.922** | |||
组别 | MT-ND4 | MT-ND5 | MT-ND6 | |||
假手术组 | 0.90±0.08 | 0.27±0.06 | 0.08±0.01 | |||
模型组 | 0.97±0.09 | 0.87±0.07a | 0.81±0.08a | |||
BOC2低剂量组 | 0.95±0.08 | 0.46±0.03ab | 0.53±0.02ab | |||
BOC2高剂量组 | 0.91±0.08 | 0.40±0.03ab | 0.29±0.07abc | |||
F | 0.461 | 85.969** | 98.705** |
表4 各组大鼠血浆中NFPs蛋白表达的比较 (n=3,$\bar{x}±s$)
Tab.4 Comparison of NFPs protein expression in plasma of rats between four groups
组别 | MT-ND1 | MT-ND2 | MT-ND3 | |||
---|---|---|---|---|---|---|
假手术组 | 0.06±0.01 | 0.13±0.01 | 0.08±0.01 | |||
模型组 | 0.72±0.02a | 0.64±0.02a | 0.38±0.02a | |||
BOC2低剂量组 | 0.34±0.02ab | 0.08±0.01ab | 0.22±0.04ab | |||
BOC2高剂量组 | 0.25±0.05abc | 0.09±0.01ab | 0.09±0.01bc | |||
F | 297.968** | 1 952.960** | 100.922** | |||
组别 | MT-ND4 | MT-ND5 | MT-ND6 | |||
假手术组 | 0.90±0.08 | 0.27±0.06 | 0.08±0.01 | |||
模型组 | 0.97±0.09 | 0.87±0.07a | 0.81±0.08a | |||
BOC2低剂量组 | 0.95±0.08 | 0.46±0.03ab | 0.53±0.02ab | |||
BOC2高剂量组 | 0.91±0.08 | 0.40±0.03ab | 0.29±0.07abc | |||
F | 0.461 | 85.969** | 98.705** |
组别 | FPR1 | FPR2 |
---|---|---|
假手术组 | 64.71±5.37 | 1.84±0.77 |
模型组 | 158.04±8.15a | 90.19±6.47a |
BOC2低剂量组 | 121.24±10.53ab | 59.72±4.22ab |
BOC2高剂量组 | 57.85±3.08abc | 20.92±2.53abc |
F | 423.016** | 937.290** |
表5 各组大鼠胰腺组织FPRs蛋白表达水平的比较 (n=10,OD值,$\bar{x}±s$)
Tab.5 Comparison of FPRs protein expression levels in pancreatic tissue of rats between four groups
组别 | FPR1 | FPR2 |
---|---|---|
假手术组 | 64.71±5.37 | 1.84±0.77 |
模型组 | 158.04±8.15a | 90.19±6.47a |
BOC2低剂量组 | 121.24±10.53ab | 59.72±4.22ab |
BOC2高剂量组 | 57.85±3.08abc | 20.92±2.53abc |
F | 423.016** | 937.290** |
组别 | IL-1β | IL-6 | TNF-α |
---|---|---|---|
假手术组 | 3.92±0.49 | 19.48±2.34 | 15.52±2.42 |
模型组 | 14.35±2.81a | 83.36±7.80a | 53.99±5.25a |
BOC2低剂量组 | 10.22±2.34ab | 62.95±10.10ab | 47.87±5.54ab |
BOC2高剂量组 | 8.33±1.51abc | 47.98±4.45abc | 35.38±4.06abc |
F | 46.966** | 153.786** | 143.213** |
表6 各组大鼠血浆中IL-1β、IL-6和TNF-α水平的比较 (n=10,ng/L,$\bar{x}±s$)
Tab.6 Comparison of IL-1β, IL-6 and TNF-α levels in plasma of rats between four groups
组别 | IL-1β | IL-6 | TNF-α |
---|---|---|---|
假手术组 | 3.92±0.49 | 19.48±2.34 | 15.52±2.42 |
模型组 | 14.35±2.81a | 83.36±7.80a | 53.99±5.25a |
BOC2低剂量组 | 10.22±2.34ab | 62.95±10.10ab | 47.87±5.54ab |
BOC2高剂量组 | 8.33±1.51abc | 47.98±4.45abc | 35.38±4.06abc |
F | 46.966** | 153.786** | 143.213** |
组别 | IL-1β | IL-6 | TNF-α |
---|---|---|---|
假手术组 | 1.00±0.05 | 1.00±0.09 | 1.00±0.06 |
模型组 | 8.01±0.66a | 49.72±5.11a | 39.98±3.01a |
BOC2低剂量组 | 4.01±0.36ab | 18.11±1.80ab | 9.88±1.03ab |
BOC2高剂量组 | 2.11±0.25abc | 11.45±1.24abc | 4.67±0.77abc |
F | 483.861** | 456.466** | 942.534** |
表7 各组大鼠胰腺组织中IL-1β、IL-6和TNF-α mRNA相对表达量的比较 (n=10,$\bar{x}±s$)
Tab.7 Comparison of relative expression levels of IL-1β, IL-6 and TNF-α mRNA in pancreatic tissue of rats between four groups
组别 | IL-1β | IL-6 | TNF-α |
---|---|---|---|
假手术组 | 1.00±0.05 | 1.00±0.09 | 1.00±0.06 |
模型组 | 8.01±0.66a | 49.72±5.11a | 39.98±3.01a |
BOC2低剂量组 | 4.01±0.36ab | 18.11±1.80ab | 9.88±1.03ab |
BOC2高剂量组 | 2.11±0.25abc | 11.45±1.24abc | 4.67±0.77abc |
F | 483.861** | 456.466** | 942.534** |
[1] | 中华医学会外科学分会胰腺外科学组. 中国急性胰腺炎诊治指南(2021)[J]. 浙江实用医学, 2021, 26(6):511-519,535. |
Chinese Pancreatic Surgery Association,Chinese Society of Surgery,Chinese Medical Association. Guidelines for diagnosis and treatment of acute pancreatitis in China (2021)[J]. Zhejiang Practical Medicine, 2021, 26(6):511-519,535. doi:10.16794/j.cnki.cn33-1207/r.2021.06.003. | |
[2] | 张雪奇, 兑秋李, 张云娜, 等. 急性胰腺炎的中医药治疗知识图谱可视化分析[J]. 中国中西医结合外科杂志, 2023, 29(6):746-752. |
ZHANG X Q, DUI Q L, ZHANG Y N, et al. Visual analysis of knowledge graph of traditional Chinese medicine treatment of acute pancreatitis[J]. Chinese Journal of Surgery of Integrated Traditional and Western Medicine, 2023, 29(6):746-752. doi:10.3969/j.issn.1007-6948.2023.05.005. | |
[3] | ZEREM E, KURTCEHAJIC A, KUNOSIĆ S, et al. Current trends in acute pancreatitis:diagnostic and therapeutic challenges[J]. World J Gastroenterol, 2023, 29(18):2747-2763. doi:10.3748/wjg.v29.i18.2747. |
[4] | LU Y Y, LI B Q, WEI M, et al. HDL inhibits pancreatic acinar cell NLRP3 inflammasome activation and protect against acinar cell pyroptosis in acute pancreatitis[J]. Int Immunopharmacol, 2023, 125(Pt A):110950. doi:10.1016/j.intimp.2023.110950. |
[5] | BARRERA GUTIERREZ J C, GREENBURG I, SHAH J, et al. Severe acute pancreatitis prediction:a model derived from a prospective registry cohort[J]. Cureus, 2023, 15(10):e46809. doi:10.7759/cureus.46809. |
[6] | LIU Y, CUI H, MEI C, et al. Sirtuin4 alleviates severe acute pancreatitis by regulating HIF-1α/HO-1 mediated ferroptosis[J]. Cell Death Dis, 2023, 14(10):694. doi:10.1038/s41419-023-06216-x. |
[7] | LI L, ZHANG Q, FENG Y, et al. A novel serum exosomal miRNA signature in the early prediction of persistent organ failure in patients with acute pancreatitis[J]. Ann Surg, 2024 Feb 7. doi: 10.1097/SLA.0000000000006229. Online ahead of print. |
[8] | CHEN G, WANG X, LIAO Q, et al. Structural basis for recognition of N-formyl peptides as pathogen-associated molecular patterns[J]. Nat Commun, 2022, 13(1):5232. doi:10.1038/s41467-022-32822-y. |
[9] | D'AMICO R, FUSCO R, CORDARO M, et al. Modulation of NLRP3 inflammasome through formyl peptide receptor 1 (FPR-1) pathway as a new therapeutic target in bronchiolitis obliterans syndrome[J]. Int J Mol Sci, 2020, 21(6):2144. doi:10.3390/ijms21062144. |
[10] | CHEN T, XIONG M, ZONG X, et al. Structural basis of ligand binding modes at the human formyl peptide receptor 2[J]. Nat Commun, 2020, 11(1):1208. doi:10.1038/s41467-020-15009-1. |
[11] | TSAI Y F, YANG S C, CHANG W Y, et al. Garcinia multiflora inhibits FPR1-mediated neutrophil activation and protects against acute lung injury[J]. Cell Physiol Biochem, 2018, 51(6):2776-2793. doi:10.1159/000495970. |
[12] | 肖懿, 张桂贤, 高瑞芳, 等. 重症急性胰腺炎大鼠血浆中6种线粒体N-甲酰肽及胰腺FPR1的表达研究[J]. 天津医药, 2022, 50(2):150-154. |
XIAO Y, ZHANG G X, GAO R F, et al. The expression of six kinds of mitochondrial N-formyl peptides in plasma and pancreatic FPR1 in severe acute pancreatitis rats[J]. Tianjin Med J, 2022, 50(2):150-154. doi:10.11958/20211715. | |
[13] | 胡泉东, 杨玉娟, 余珊珊. 脂氧素受体激动剂BML-111对大鼠急性肝损伤的干预作用及其机制[J]. 中国应用生理学杂志, 2020, 36(5):494-498,532. |
HU Q D, YANG Y J, YU S S. Intervention effect of lipoxygen receptor agonist BML-111 on acute liver injury in rats and its mechanism[J]. Chin J Appl Physiol, 2020, 36(5):494-498,532. doi:10.12047/j.cjap.5990.2020.105. | |
[14] | 肖懿, 冯志乔, 张桂贤, 等. 血必净注射液调节线粒体N-甲酰肽/NLRP3炎症通路对重症急性胰腺炎大鼠模型的治疗机制[J]. 中国实验方剂学杂志, 2022, 28(7):88-94. |
XIAO Y, FENG Z Q, ZHANG G X, et al. Xuebijing injection regulates mitochondrial N-formyl peptides/NLRP3 inflammatory pathway to treat severe acute pancreatitis in rats[J]. Chin J Exp Tradit Med Form, 2022, 28(7):88-94. doi:10.13422/j.cnki.syfjx.20220738. | |
[15] | ITAGAKI K, KACZMAREK E, KWON W Y, et al. Formyl peptide receptor-1 blockade prevents receptor regulation by mitochondrial danger-associated molecular patterns and preserves neutrophil function after trauma[J]. Crit Care Med, 2020, 48(2):e123-e132. doi:10.1097/CCM.0000000000004094. |
[16] | WINTHER M, DAHLGREN C, FORSMAN H. Formyl peptide receptors in mice and men:similarities and differences in recognition of conventional ligands and modulating lipopeptides[J]. Basic Clin Pharmacol Toxicol, 2018, 122(2):191-198. doi:10.1111/bcpt.12903. |
[17] | ABOUELASRAR SALAMA S, GOUWY M, VAN DAMME J, et al. Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands[J]. Front Endocrinol (Lausanne), 2023, 14:1119227. doi:10.3389/fendo.2023.1119227. |
[18] | QIN C X, NORLING L V, VECCHIO E A, et al. Formylpeptide receptor 2:nomenclature,structure,signalling and translational perspectives:IUPHAR review 35[J]. Br J Pharmacol, 2022, 179(19):4617-4639. doi:10.1111/bph.15919. |
[19] | WEN X, XU X, SUN W, et al. G-protein-coupled formyl peptide receptors play a dual role in neutrophil chemotaxis and bacterial phagocytosis[J]. Mol Biol Cell, 2019, 30(3):346-356. doi:10.1091/mbc.E18-06-0358. |
[20] | CAO Y, LI F, SUN Z, et al. Regulation of microtubule stability in pulmonary microvascular endothelial cells in rats with severe acute pancreatitis:Qingyi decoction is a potential CDK5 inhibitor[J]. J Inflamm Res, 2024, 17:2513-2530. doi:10.2147/JIR.S451755. |
[21] | FAN J H, LUO N, LIU G F, et al. Mechanism of annexin A1/N-formylpeptide receptor regulation of macrophage function to inhibit hepatic stellate cell activation through Wnt/β-catenin pathway[J]. World J Gastroenterol, 2023, 29(22):3422-3439. doi:10.3748/wjg.v29.i22.3422. |
[22] | FORSMAN H, WU Y L, MÅRTENSSON J, et al. AZ2158 is a more potent formyl peptide receptor 1 inhibitor than the commonly used peptide antagonists in abolishing neutrophil chemotaxis[J]. Biochem Pharmacol, 2023, 211:115529. doi:10.1016/j.bcp.2023.115529. |
[1] | 高攀, 谢冰歆, 周赞东, 刘彤. 慢性肾脏病循环中FGF23对心房纤维化的促进作用[J]. 天津医药, 2024, 52(9): 917-923. |
[2] | 范慧慧, 任玉梅, 田新磊, 张凯, 李晓丽. 止咳平喘方对支气管哮喘小鼠气道炎症及TLR4/TRAF6/NF-κB通路的影响[J]. 天津医药, 2024, 52(9): 924-929. |
[3] | 贾维宁, 鲍亚玲, 雷慧, 殷晓宁. 夏枯草提取物对脓毒症小鼠炎症反应和腹腔巨噬细胞的影响[J]. 天津医药, 2024, 52(9): 930-935. |
[4] | 徐琼芳, 钟斐, 李子帅. 淫羊藿苷调节SDF-1/CXCR4信号通路对多囊卵巢综合征大鼠卵巢颗粒细胞凋亡的影响[J]. 天津医药, 2024, 52(7): 727-732. |
[5] | 钟敏, 施震, 周劲松, 李晋杰. GABA信号通路对脓毒症大鼠急性肺损伤内质网应激和线粒体自噬的影响[J]. 天津医药, 2024, 52(7): 733-737. |
[6] | 袁满, 冯子瀚, 谢敏, 王柏军. 大黄素对骨关节炎模型小鼠痛觉行为的调节机制[J]. 天津医药, 2024, 52(6): 572-577. |
[7] | 叶朝阳, 马建中, 李后俊, 魏鲲鹏. 急性胰腺炎患者外周血TLR4、IL-1β、NLR水平与疾病进展和预后的关系[J]. 天津医药, 2024, 52(6): 648-652. |
[8] | 陈惠刚, 池小锋, 封娣, 米娅莉. 黄芪甲苷抑制Fas/FasL信号通路减轻创伤性脑损伤大鼠神经功能缺损和神经元凋亡[J]. 天津医药, 2024, 52(5): 469-474. |
[9] | 田静, 王子龙, 肖丹娜, 范向飞. 不同咀嚼压力对大鼠正畸移动牙压力侧牙槽骨改建的影响[J]. 天津医药, 2024, 52(4): 367-371. |
[10] | 解有成, 王菲, 徐进, 于晓辉. SIRT1在糖尿病心肌病发病中的研究进展[J]. 天津医药, 2024, 52(4): 443-448. |
[11] | 田佳玉, 冯丹, 胡焓, 张书力, 童胜雄, 李少军. 槲皮素通过抑制MIP-1α/CCR1/CCR5信号通路减轻大鼠带状疱疹后神经痛的机制[J]. 天津医药, 2024, 52(3): 256-260. |
[12] | 张文超, 杨雪辉, 尹涛, 王睿健, 张盟盟. 自发性急性脑出血患者血浆sCD163/sTWEAK比值与预后的关系[J]. 天津医药, 2024, 52(3): 297-301. |
[13] | 徐丹, 刘夏, 钟殿胜. 佐利替尼一线治疗EGFR突变NSCLC伴中枢神经系统转移2例报告[J]. 天津医药, 2024, 52(3): 315-318. |
[14] | 易娜, 肖雯, 田源, 袁李礼. BMAL1减轻H2O2诱导的心肌细胞损伤机制研究[J]. 天津医药, 2024, 52(2): 119-123. |
[15] | 胡娜, 李正宇, 叶春风, 吴英, 姚庆, 黄世祥, 李文, 朱海琴. miR-10b靶向TGFBR1/SMAD3通路对特发性矮小症的软骨细胞增殖、肥大的影响机制[J]. 天津医药, 2024, 52(2): 124-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||